Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000761206> ?p ?o ?g. }
- W2000761206 endingPage "63" @default.
- W2000761206 startingPage "32" @default.
- W2000761206 abstract "In this work we study the performance of some variational multiscale models (VMS) in the large eddy simulation (LES) of turbulent flows. We consider VMS models obtained by different subgrid scale approximations which include either static or dynamic subscales, linear or nonlinear multiscale splitting, and different choices of the subscale space. After a brief review of these models, we discuss some implementation aspects particularly relevant to the simulation of turbulent flows, namely the use of a skew symmetric form of the convective term and the computation of projections when orthogonal subscales are used. We analyze the energy conservation (and numerical dissipation) of the alternative VMS formulations, which is numerically evaluated. In the numerical study, we have considered three well known problems: the decay of homogeneous isotropic turbulence, the Taylor–Green vortex problem and the turbulent flow in a channel. We compare the results obtained using different VMS models, paying special attention to the effect of using orthogonal subscale spaces. The VMS results are also compared against classical LES scheme based on filtering and the dynamic Smagorinsky closure. Altogether, our results show the tremendous potential of VMS for the numerical simulation of turbulence. Further, we study the sensitivity of VMS to the algorithmic constants and analyze the behavior in the small time step limit. We have also carried out a computational cost comparison of the different formulations. Out of these experiments, we can state that the numerical results obtained with the different VMS formulations (as far as they converge) are quite similar. However, some choices are prone to instabilities and the results obtained in terms of computational cost are certainly different. The dynamic orthogonal subscales model turns out to be best in terms of efficiency and robustness." @default.
- W2000761206 created "2016-06-24" @default.
- W2000761206 creator A5034861941 @default.
- W2000761206 creator A5053636445 @default.
- W2000761206 creator A5065122950 @default.
- W2000761206 creator A5071818847 @default.
- W2000761206 date "2015-03-01" @default.
- W2000761206 modified "2023-10-13" @default.
- W2000761206 title "Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows" @default.
- W2000761206 cites W1517347554 @default.
- W2000761206 cites W1965879162 @default.
- W2000761206 cites W1969423446 @default.
- W2000761206 cites W1970226611 @default.
- W2000761206 cites W1970849842 @default.
- W2000761206 cites W1972670182 @default.
- W2000761206 cites W1972676753 @default.
- W2000761206 cites W1974521166 @default.
- W2000761206 cites W1976562529 @default.
- W2000761206 cites W1977405267 @default.
- W2000761206 cites W1978531870 @default.
- W2000761206 cites W1981511599 @default.
- W2000761206 cites W1986608219 @default.
- W2000761206 cites W1997633759 @default.
- W2000761206 cites W2000425991 @default.
- W2000761206 cites W2000867371 @default.
- W2000761206 cites W2003105834 @default.
- W2000761206 cites W2004494416 @default.
- W2000761206 cites W2009774993 @default.
- W2000761206 cites W2012645756 @default.
- W2000761206 cites W2023491364 @default.
- W2000761206 cites W2027956662 @default.
- W2000761206 cites W2028851662 @default.
- W2000761206 cites W2029735269 @default.
- W2000761206 cites W2031714562 @default.
- W2000761206 cites W2035117127 @default.
- W2000761206 cites W2036746723 @default.
- W2000761206 cites W2039259138 @default.
- W2000761206 cites W2045648141 @default.
- W2000761206 cites W2049068370 @default.
- W2000761206 cites W2056191098 @default.
- W2000761206 cites W2058742228 @default.
- W2000761206 cites W2065978762 @default.
- W2000761206 cites W2068256060 @default.
- W2000761206 cites W2069611087 @default.
- W2000761206 cites W2070033465 @default.
- W2000761206 cites W2070056651 @default.
- W2000761206 cites W2070089802 @default.
- W2000761206 cites W2072168892 @default.
- W2000761206 cites W2073897969 @default.
- W2000761206 cites W2074079693 @default.
- W2000761206 cites W2078045751 @default.
- W2000761206 cites W2079816657 @default.
- W2000761206 cites W2091312969 @default.
- W2000761206 cites W2092582813 @default.
- W2000761206 cites W2092626926 @default.
- W2000761206 cites W2095039621 @default.
- W2000761206 cites W2118462315 @default.
- W2000761206 cites W2130548868 @default.
- W2000761206 cites W2131537960 @default.
- W2000761206 cites W2139519490 @default.
- W2000761206 cites W2141733977 @default.
- W2000761206 cites W2154122281 @default.
- W2000761206 cites W2165123564 @default.
- W2000761206 cites W2171404716 @default.
- W2000761206 cites W2564800775 @default.
- W2000761206 cites W4251865999 @default.
- W2000761206 cites W4361863164 @default.
- W2000761206 doi "https://doi.org/10.1016/j.cma.2014.10.041" @default.
- W2000761206 hasPublicationYear "2015" @default.
- W2000761206 type Work @default.
- W2000761206 sameAs 2000761206 @default.
- W2000761206 citedByCount "85" @default.
- W2000761206 countsByYear W20007612062015 @default.
- W2000761206 countsByYear W20007612062016 @default.
- W2000761206 countsByYear W20007612062017 @default.
- W2000761206 countsByYear W20007612062018 @default.
- W2000761206 countsByYear W20007612062019 @default.
- W2000761206 countsByYear W20007612062020 @default.
- W2000761206 countsByYear W20007612062021 @default.
- W2000761206 countsByYear W20007612062022 @default.
- W2000761206 countsByYear W20007612062023 @default.
- W2000761206 crossrefType "journal-article" @default.
- W2000761206 hasAuthorship W2000761206A5034861941 @default.
- W2000761206 hasAuthorship W2000761206A5053636445 @default.
- W2000761206 hasAuthorship W2000761206A5065122950 @default.
- W2000761206 hasAuthorship W2000761206A5071818847 @default.
- W2000761206 hasBestOaLocation W20007612062 @default.
- W2000761206 hasConcept C121332964 @default.
- W2000761206 hasConcept C121448008 @default.
- W2000761206 hasConcept C121864883 @default.
- W2000761206 hasConcept C126255220 @default.
- W2000761206 hasConcept C135402231 @default.
- W2000761206 hasConcept C140820882 @default.
- W2000761206 hasConcept C158622935 @default.
- W2000761206 hasConcept C182748727 @default.
- W2000761206 hasConcept C18533594 @default.
- W2000761206 hasConcept C196558001 @default.
- W2000761206 hasConcept C2779251355 @default.