Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000769192> ?p ?o ?g. }
- W2000769192 endingPage "442" @default.
- W2000769192 startingPage "431" @default.
- W2000769192 abstract "Summary The ensemble Kalman Filter technique (EnKF) has been reported to be very efficient for real-time updating of reservoir models to match the most current production data. Using EnKF, an ensemble of reservoir models assimilating the most current observations of production data is always available. Thus, the estimations of reservoir model parameters, and their associated uncertainty, as well as the forecasts are always up-to-date. In this paper, we apply the EnKF for continuously updating an ensemble of permeability models to match real-time multiphase production data. We improve the previous EnKF by adding a confirming option (i.e., the flow equations are re-solved from the previous assimilating step to the current step using the updated current permeability models). By doing so, we ensure that the updated static and dynamic parameters are always consistent with the flow equations at the current step. However, it also creates some inconsistency between the static and dynamic parameters at the previous step where the confirming starts. Nevertheless, we show that, with the confirming approach, the filter shows better performance for the particular example investigated. We also investigate the sensitivity of using a different number of realizations in the EnKF. Our results show that a relatively large number of realizations are needed to obtain stable results, particularly for the reliable assessment of uncertainty. The sensitivity of using different covariance functions is also investigated. The efficiency and robustness of the EnKF is demonstrated using an example. By assimilating more production data, new features of heterogeneity in the reservoir model can be revealed with reduced uncertainty, resulting in more accurate predictions of reservoir production. Introduction The reliability of reservoir models could increase as more data are included in their construction. Traditionally, static (hard and soft) data, such as geological, geophysical, and well log/core data are incorporated into reservoir geological models through conditional geostatistical simulation (Deutsch and Journel 1998). Dynamic production data, such as historical measurements of reservoir production, account for the majority of reservoir data collected during the production phase. These data are directly related to the recovery process and to the response variables that form the basis for reservoir management decisions. Incorporation of dynamic data is typically done through a history-matching process. Traditionally, history matching adjusts model variables (such as permeability, porosity, and transmissibility) so that the flow simulation results using the adjusted parameters match the observations. It usually requires repeated flow simulations. Both manual and (semi-) automatic history-matching processes are available in the industry (Chen et al. 1974; He et al. 1996; Landa and Horne 1997; Milliken and Emanuel 1998; Vasco et al. 1998; Wen et al. 1998a, 1998b; Roggero and Hu 1998; Agarwal and Blunt 2003; Caers 2003; Cheng et al. 2004). Automatic history matching is usually formulated in the form of a minimization problem in which the mismatch between measurements and computed values is minimized (Tarantola 1987; Sun 1994). Gradient-based methods are widely employed for such minimization problems, which require the computation of sensitivity coefficients (Li et al. 2003; Wen et al. 2003; Gao and Reynolds 2006). In the recent decade, automatic history matching has been a very active research area with significant progress reported (Cheng et al. 2004; Gao and Reynolds 2006; Wen et al. 1997). However, most approaches are either limited to small and simple reservoir models or are computationally too intensive for practical applications. Under the framework of traditional history matching, the assessment of uncertainty is usually through a repeated history-matching process with different initial models, which makes the process even more CPU-demanding. In addition, the traditional history-matching methods are not designed in such a fashion that allows for continuous model updating. When new production data are available and are required to be incorporated, the history-matching process has to be repeated using all measured data. These limit the efficiency and applicability of the traditional automatic history-matching techniques." @default.
- W2000769192 created "2016-06-24" @default.
- W2000769192 creator A5076237055 @default.
- W2000769192 creator A5082587485 @default.
- W2000769192 date "2006-12-01" @default.
- W2000769192 modified "2023-10-16" @default.
- W2000769192 title "Real-Time Reservoir Model Updating Using Ensemble Kalman Filter With Confirming Option" @default.
- W2000769192 cites W1963828217 @default.
- W2000769192 cites W1977956305 @default.
- W2000769192 cites W1982093566 @default.
- W2000769192 cites W1987308763 @default.
- W2000769192 cites W1990211853 @default.
- W2000769192 cites W2006105001 @default.
- W2000769192 cites W2009104157 @default.
- W2000769192 cites W2014441464 @default.
- W2000769192 cites W2016734672 @default.
- W2000769192 cites W2034397610 @default.
- W2000769192 cites W2038988652 @default.
- W2000769192 cites W2070376369 @default.
- W2000769192 cites W2090318201 @default.
- W2000769192 cites W2132681396 @default.
- W2000769192 cites W2157098139 @default.
- W2000769192 cites W2169146757 @default.
- W2000769192 cites W2172996688 @default.
- W2000769192 cites W2179860363 @default.
- W2000769192 cites W2891163915 @default.
- W2000769192 cites W2985057205 @default.
- W2000769192 doi "https://doi.org/10.2118/92991-pa" @default.
- W2000769192 hasPublicationYear "2006" @default.
- W2000769192 type Work @default.
- W2000769192 sameAs 2000769192 @default.
- W2000769192 citedByCount "114" @default.
- W2000769192 countsByYear W20007691922012 @default.
- W2000769192 countsByYear W20007691922013 @default.
- W2000769192 countsByYear W20007691922014 @default.
- W2000769192 countsByYear W20007691922015 @default.
- W2000769192 countsByYear W20007691922016 @default.
- W2000769192 countsByYear W20007691922017 @default.
- W2000769192 countsByYear W20007691922018 @default.
- W2000769192 countsByYear W20007691922019 @default.
- W2000769192 countsByYear W20007691922020 @default.
- W2000769192 countsByYear W20007691922021 @default.
- W2000769192 countsByYear W20007691922022 @default.
- W2000769192 countsByYear W20007691922023 @default.
- W2000769192 crossrefType "journal-article" @default.
- W2000769192 hasAuthorship W2000769192A5076237055 @default.
- W2000769192 hasAuthorship W2000769192A5082587485 @default.
- W2000769192 hasConcept C104317684 @default.
- W2000769192 hasConcept C105795698 @default.
- W2000769192 hasConcept C106131492 @default.
- W2000769192 hasConcept C111368507 @default.
- W2000769192 hasConcept C11413529 @default.
- W2000769192 hasConcept C119857082 @default.
- W2000769192 hasConcept C120882062 @default.
- W2000769192 hasConcept C121332964 @default.
- W2000769192 hasConcept C127313418 @default.
- W2000769192 hasConcept C127413603 @default.
- W2000769192 hasConcept C148043351 @default.
- W2000769192 hasConcept C153294291 @default.
- W2000769192 hasConcept C154945302 @default.
- W2000769192 hasConcept C157286648 @default.
- W2000769192 hasConcept C178650346 @default.
- W2000769192 hasConcept C185592680 @default.
- W2000769192 hasConcept C206833254 @default.
- W2000769192 hasConcept C21200559 @default.
- W2000769192 hasConcept C24326235 @default.
- W2000769192 hasConcept C24552861 @default.
- W2000769192 hasConcept C2778668878 @default.
- W2000769192 hasConcept C31972630 @default.
- W2000769192 hasConcept C32230216 @default.
- W2000769192 hasConcept C33923547 @default.
- W2000769192 hasConcept C41008148 @default.
- W2000769192 hasConcept C41625074 @default.
- W2000769192 hasConcept C54355233 @default.
- W2000769192 hasConcept C55493867 @default.
- W2000769192 hasConcept C63479239 @default.
- W2000769192 hasConcept C78762247 @default.
- W2000769192 hasConcept C79334102 @default.
- W2000769192 hasConcept C86803240 @default.
- W2000769192 hasConceptScore W2000769192C104317684 @default.
- W2000769192 hasConceptScore W2000769192C105795698 @default.
- W2000769192 hasConceptScore W2000769192C106131492 @default.
- W2000769192 hasConceptScore W2000769192C111368507 @default.
- W2000769192 hasConceptScore W2000769192C11413529 @default.
- W2000769192 hasConceptScore W2000769192C119857082 @default.
- W2000769192 hasConceptScore W2000769192C120882062 @default.
- W2000769192 hasConceptScore W2000769192C121332964 @default.
- W2000769192 hasConceptScore W2000769192C127313418 @default.
- W2000769192 hasConceptScore W2000769192C127413603 @default.
- W2000769192 hasConceptScore W2000769192C148043351 @default.
- W2000769192 hasConceptScore W2000769192C153294291 @default.
- W2000769192 hasConceptScore W2000769192C154945302 @default.
- W2000769192 hasConceptScore W2000769192C157286648 @default.
- W2000769192 hasConceptScore W2000769192C178650346 @default.
- W2000769192 hasConceptScore W2000769192C185592680 @default.
- W2000769192 hasConceptScore W2000769192C206833254 @default.
- W2000769192 hasConceptScore W2000769192C21200559 @default.
- W2000769192 hasConceptScore W2000769192C24326235 @default.