Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000775042> ?p ?o ?g. }
- W2000775042 endingPage "1074" @default.
- W2000775042 startingPage "1062" @default.
- W2000775042 abstract "Transition metal oxides that mix electronic and ionic conductivity are essential active components of many electrochemical charge-storage devices, ranging from primary alkaline cells to more advanced rechargeable Li-ion batteries. In these devices, charge storage occurs via cation-insertion/deinsertion mechanisms in conjunction with the reduction/oxidation of metal sites in the oxide. Batteries that incorporate such metal oxides are typically designed for high specific energy, but not necessarily for high specific power. Electrochemical capacitors (ECs), which are typically composed of symmetric high-surface-area carbon electrodes that store charge via double-layer capacitance, deliver their energy in time scales of seconds, but at much lower specific energy than batteries. The fast, reversible faradaic reactions (typically described as pseudocapacitance) of particular nanoscale metal oxides (e.g., ruthenium and manganese oxides) provide a strategy for bridging the power/energy performance gap between batteries and conventional ECs. These processes enhance charge-storage capacity to boost specific energy, while maintaining the few-second timescale of the charge-discharge response of carbon-based ECs. In this Account, we describe three examples of redox-based deposition of EC-relevant metal oxides (MnO2, FeOx, and RuO2) and discuss their potential deployment in next-generation ECs that use aqueous electrolytes. To extract the maximum pseudocapacitance functionality of metal oxides, one must carefully consider how they are synthesized and subsequently integrated into practical electrode structures. Expressing the metal oxide in a nanoscale form often enhances electrochemical utilization (maximizing specific capacitance) and facilitates high-rate operation for both charge and discharge. The wiring of the metal oxide, in terms of both electron and ion transport, when fabricated into a practical electrode architecture, is also a critical design parameter for achieving characteristic EC charge-discharge timescales. For example, conductive carbon must often be combined with the poorly conductive metal oxides to provide long-range electron pathways through the electrode. However, the ad hoc mixing of discrete carbon and oxide powders into composite electrodes may not support optimal utilization or rate performance. As an alternative, nanoscale metal oxides of interest for ECs can be synthesized directly on the surfaces of nanostructured carbons, with the carbon surface acting as a sacrificial reductant when exposed to a solution-phase, oxidizing precursor of the desired metal oxide (e.g., MnO4(-) for MnO2). These redox deposition methods can be applied to advanced carbon nanoarchitectures with well-designed pore structures. These architectures promote effective electrolyte infiltration and ion transport to the nanoscale metal oxide domains within the electrode architecture, which further enhances high-rate operation." @default.
- W2000775042 created "2016-06-24" @default.
- W2000775042 creator A5001779394 @default.
- W2000775042 creator A5003771997 @default.
- W2000775042 creator A5014747759 @default.
- W2000775042 creator A5090935206 @default.
- W2000775042 date "2012-03-01" @default.
- W2000775042 modified "2023-10-03" @default.
- W2000775042 title "Redox Deposition of Nanoscale Metal Oxides on Carbon for Next-Generation Electrochemical Capacitors" @default.
- W2000775042 cites W1515916080 @default.
- W2000775042 cites W1648015584 @default.
- W2000775042 cites W1963496313 @default.
- W2000775042 cites W1966391307 @default.
- W2000775042 cites W1969552909 @default.
- W2000775042 cites W1972801571 @default.
- W2000775042 cites W1973038021 @default.
- W2000775042 cites W1974726514 @default.
- W2000775042 cites W1975128377 @default.
- W2000775042 cites W1976508182 @default.
- W2000775042 cites W1979198089 @default.
- W2000775042 cites W1986478680 @default.
- W2000775042 cites W1988435520 @default.
- W2000775042 cites W1989835523 @default.
- W2000775042 cites W1993709894 @default.
- W2000775042 cites W1996079360 @default.
- W2000775042 cites W1997554456 @default.
- W2000775042 cites W1999768189 @default.
- W2000775042 cites W2000415655 @default.
- W2000775042 cites W2001280617 @default.
- W2000775042 cites W2002557071 @default.
- W2000775042 cites W2002703981 @default.
- W2000775042 cites W2005095653 @default.
- W2000775042 cites W2006070021 @default.
- W2000775042 cites W2008294721 @default.
- W2000775042 cites W2010556499 @default.
- W2000775042 cites W2012513954 @default.
- W2000775042 cites W2015153919 @default.
- W2000775042 cites W2015388069 @default.
- W2000775042 cites W2016637305 @default.
- W2000775042 cites W2019123470 @default.
- W2000775042 cites W2020174268 @default.
- W2000775042 cites W2021076295 @default.
- W2000775042 cites W2022171069 @default.
- W2000775042 cites W2023605659 @default.
- W2000775042 cites W2027785472 @default.
- W2000775042 cites W2027883622 @default.
- W2000775042 cites W2028156943 @default.
- W2000775042 cites W2029164136 @default.
- W2000775042 cites W2029570446 @default.
- W2000775042 cites W2031569346 @default.
- W2000775042 cites W2036148824 @default.
- W2000775042 cites W2036899440 @default.
- W2000775042 cites W2041602764 @default.
- W2000775042 cites W2043802739 @default.
- W2000775042 cites W2047153449 @default.
- W2000775042 cites W2052994706 @default.
- W2000775042 cites W2053328406 @default.
- W2000775042 cites W2053360078 @default.
- W2000775042 cites W2053746708 @default.
- W2000775042 cites W2059046826 @default.
- W2000775042 cites W2069389495 @default.
- W2000775042 cites W2072287777 @default.
- W2000775042 cites W2078099256 @default.
- W2000775042 cites W2086526201 @default.
- W2000775042 cites W2091740599 @default.
- W2000775042 cites W2095116311 @default.
- W2000775042 cites W2112046959 @default.
- W2000775042 cites W2129396911 @default.
- W2000775042 cites W2139402501 @default.
- W2000775042 cites W2139694550 @default.
- W2000775042 cites W2154348722 @default.
- W2000775042 cites W2162803647 @default.
- W2000775042 cites W2168004372 @default.
- W2000775042 cites W2952469006 @default.
- W2000775042 doi "https://doi.org/10.1021/ar2002717" @default.
- W2000775042 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22380783" @default.
- W2000775042 hasPublicationYear "2012" @default.
- W2000775042 type Work @default.
- W2000775042 sameAs 2000775042 @default.
- W2000775042 citedByCount "171" @default.
- W2000775042 countsByYear W20007750422012 @default.
- W2000775042 countsByYear W20007750422013 @default.
- W2000775042 countsByYear W20007750422014 @default.
- W2000775042 countsByYear W20007750422015 @default.
- W2000775042 countsByYear W20007750422016 @default.
- W2000775042 countsByYear W20007750422017 @default.
- W2000775042 countsByYear W20007750422018 @default.
- W2000775042 countsByYear W20007750422019 @default.
- W2000775042 countsByYear W20007750422020 @default.
- W2000775042 countsByYear W20007750422021 @default.
- W2000775042 countsByYear W20007750422022 @default.
- W2000775042 countsByYear W20007750422023 @default.
- W2000775042 crossrefType "journal-article" @default.
- W2000775042 hasAuthorship W2000775042A5001779394 @default.
- W2000775042 hasAuthorship W2000775042A5003771997 @default.
- W2000775042 hasAuthorship W2000775042A5014747759 @default.
- W2000775042 hasAuthorship W2000775042A5090935206 @default.
- W2000775042 hasConcept C121332964 @default.