Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000778936> ?p ?o ?g. }
- W2000778936 endingPage "36" @default.
- W2000778936 startingPage "25" @default.
- W2000778936 abstract "Most methods used in functional MRI (fMRI) brain mapping require restrictive assumptions about the shape and timing of the fMRI signal in activated voxels. Consequently, fMRI data may be partially and misleadingly characterized, leading to suboptimal or invalid inference. To limit these assumptions and to capture the broad range of possible activation patterns, a novel statistical fMRI brain mapping method is proposed. It relies on hidden semi-Markov event sequence models (HSMESMs), a special class of hidden Markov models (HMMs) dedicated to the modeling and analysis of event-based random processes.Activation detection is formulated in terms of time coupling between (1) the observed sequence of hemodynamic response onset (HRO) events detected in the voxel's fMRI signal and (2) the hidden sequence of task-induced neural activation onset (NAO) events underlying the HROs. Both event sequences are modeled within a single HSMESM. The resulting brain activation model is trained to automatically detect neural activity embedded in the input fMRI data set under analysis. The data sets considered in this article are threefold: synthetic epoch-related, real epoch-related (auditory lexical processing task), and real event-related (oddball detection task) fMRI data sets.Synthetic data: Activation detection results demonstrate the superiority of the HSMESM mapping method with respect to a standard implementation of the statistical parametric mapping (SPM) approach. They are also very close, sometimes equivalent, to those obtained with an ideal implementation of SPM in which the activation patterns synthesized are reused for analysis. The HSMESM method appears clearly insensitive to timing variations of the hemodynamic response and exhibits low sensitivity to fluctuations of its shape (unsustained activation during task). Real epoch-related data: HSMESM activation detection results compete with those obtained with SPM, without requiring any prior definition of the expected activation patterns thanks to the unsupervised character of the HSMESM mapping approach. Along with activation maps, the method offers a wide range of additional fMRI analysis functionalities, including activation lag mapping, activation mode visualization, and hemodynamic response function analysis. Real event-related data: Activation detection results confirm and validate the overall strategy that consists in focusing the analysis on the transients, time-localized events that are the HROs.All the experiments performed on synthetic and real fMRI data demonstrate the relevance of HSMESMs in fMRI brain mapping. In particular, the statistical character of these models, along with their learning and generalizing abilities are of particular interest when dealing with strong variabilities of the active fMRI signal across time, space, experiments, and subjects." @default.
- W2000778936 created "2016-06-24" @default.
- W2000778936 creator A5008891724 @default.
- W2000778936 creator A5045490153 @default.
- W2000778936 creator A5062279807 @default.
- W2000778936 creator A5062563224 @default.
- W2000778936 creator A5063294821 @default.
- W2000778936 creator A5083922062 @default.
- W2000778936 date "2005-01-01" @default.
- W2000778936 modified "2023-09-26" @default.
- W2000778936 title "Hidden Markov event sequence models: Toward unsupervised functional MRI brain mapping1" @default.
- W2000778936 cites W124350113 @default.
- W2000778936 cites W1973831046 @default.
- W2000778936 cites W1996166607 @default.
- W2000778936 cites W2002196360 @default.
- W2000778936 cites W2008964102 @default.
- W2000778936 cites W2025283285 @default.
- W2000778936 cites W2048399301 @default.
- W2000778936 cites W2049161753 @default.
- W2000778936 cites W2064218608 @default.
- W2000778936 cites W2067415500 @default.
- W2000778936 cites W2073587834 @default.
- W2000778936 cites W2093366270 @default.
- W2000778936 cites W2125838338 @default.
- W2000778936 cites W2137026143 @default.
- W2000778936 cites W2138377632 @default.
- W2000778936 cites W2139082531 @default.
- W2000778936 cites W2142384583 @default.
- W2000778936 cites W2167121025 @default.
- W2000778936 cites W4250725391 @default.
- W2000778936 doi "https://doi.org/10.1016/j.acra.2004.09.012" @default.
- W2000778936 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15691723" @default.
- W2000778936 hasPublicationYear "2005" @default.
- W2000778936 type Work @default.
- W2000778936 sameAs 2000778936 @default.
- W2000778936 citedByCount "11" @default.
- W2000778936 countsByYear W20007789362012 @default.
- W2000778936 countsByYear W20007789362013 @default.
- W2000778936 countsByYear W20007789362016 @default.
- W2000778936 crossrefType "journal-article" @default.
- W2000778936 hasAuthorship W2000778936A5008891724 @default.
- W2000778936 hasAuthorship W2000778936A5045490153 @default.
- W2000778936 hasAuthorship W2000778936A5062279807 @default.
- W2000778936 hasAuthorship W2000778936A5062563224 @default.
- W2000778936 hasAuthorship W2000778936A5063294821 @default.
- W2000778936 hasAuthorship W2000778936A5083922062 @default.
- W2000778936 hasConcept C121332964 @default.
- W2000778936 hasConcept C126838900 @default.
- W2000778936 hasConcept C143409427 @default.
- W2000778936 hasConcept C153180895 @default.
- W2000778936 hasConcept C154945302 @default.
- W2000778936 hasConcept C15744967 @default.
- W2000778936 hasConcept C169760540 @default.
- W2000778936 hasConcept C177264268 @default.
- W2000778936 hasConcept C199360897 @default.
- W2000778936 hasConcept C23224414 @default.
- W2000778936 hasConcept C2778112365 @default.
- W2000778936 hasConcept C2779226451 @default.
- W2000778936 hasConcept C2779662365 @default.
- W2000778936 hasConcept C28490314 @default.
- W2000778936 hasConcept C39313694 @default.
- W2000778936 hasConcept C41008148 @default.
- W2000778936 hasConcept C54170458 @default.
- W2000778936 hasConcept C54355233 @default.
- W2000778936 hasConcept C62520636 @default.
- W2000778936 hasConcept C71924100 @default.
- W2000778936 hasConcept C86803240 @default.
- W2000778936 hasConceptScore W2000778936C121332964 @default.
- W2000778936 hasConceptScore W2000778936C126838900 @default.
- W2000778936 hasConceptScore W2000778936C143409427 @default.
- W2000778936 hasConceptScore W2000778936C153180895 @default.
- W2000778936 hasConceptScore W2000778936C154945302 @default.
- W2000778936 hasConceptScore W2000778936C15744967 @default.
- W2000778936 hasConceptScore W2000778936C169760540 @default.
- W2000778936 hasConceptScore W2000778936C177264268 @default.
- W2000778936 hasConceptScore W2000778936C199360897 @default.
- W2000778936 hasConceptScore W2000778936C23224414 @default.
- W2000778936 hasConceptScore W2000778936C2778112365 @default.
- W2000778936 hasConceptScore W2000778936C2779226451 @default.
- W2000778936 hasConceptScore W2000778936C2779662365 @default.
- W2000778936 hasConceptScore W2000778936C28490314 @default.
- W2000778936 hasConceptScore W2000778936C39313694 @default.
- W2000778936 hasConceptScore W2000778936C41008148 @default.
- W2000778936 hasConceptScore W2000778936C54170458 @default.
- W2000778936 hasConceptScore W2000778936C54355233 @default.
- W2000778936 hasConceptScore W2000778936C62520636 @default.
- W2000778936 hasConceptScore W2000778936C71924100 @default.
- W2000778936 hasConceptScore W2000778936C86803240 @default.
- W2000778936 hasIssue "1" @default.
- W2000778936 hasLocation W20007789361 @default.
- W2000778936 hasLocation W20007789362 @default.
- W2000778936 hasOpenAccess W2000778936 @default.
- W2000778936 hasPrimaryLocation W20007789361 @default.
- W2000778936 hasRelatedWork W1590828106 @default.
- W2000778936 hasRelatedWork W1966534351 @default.
- W2000778936 hasRelatedWork W1977508323 @default.
- W2000778936 hasRelatedWork W2013514379 @default.
- W2000778936 hasRelatedWork W2080478523 @default.