Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000810902> ?p ?o ?g. }
- W2000810902 endingPage "345" @default.
- W2000810902 startingPage "333" @default.
- W2000810902 abstract "Image-based object recognition is employed widely in many computer vision applications such as image semantic annotation and object location. However, traditional object recognition algorithms based on the 2D features of RGB data have difficulty when objects overlap and image occlusion occurs. At present, RGB-D cameras are being used more widely and the RGB-D depth data can provide auxiliary information to address these challenges. In this study, we propose a deep learning approach for the efficient recognition of 3D objects with occlusion. First, this approach constructs a multi-view shape model based on 3D objects by using an encode–decode deep learning network to represent the features. Next, 3D object recognition in indoor scenes is performed using random forests. The application of deep learning to RGB-D data is beneficial for recovering missing information due to image occlusion. Our experimental results demonstrate that this approach can significantly improve the efficiency of feature representation and the performance of object recognition with occlusion." @default.
- W2000810902 created "2016-06-24" @default.
- W2000810902 creator A5031755593 @default.
- W2000810902 creator A5044918612 @default.
- W2000810902 creator A5061110835 @default.
- W2000810902 creator A5065124717 @default.
- W2000810902 creator A5085386606 @default.
- W2000810902 date "2015-11-01" @default.
- W2000810902 modified "2023-10-09" @default.
- W2000810902 title "Recognizing multi-view objects with occlusions using a deep architecture" @default.
- W2000810902 cites W1538131130 @default.
- W2000810902 cites W1625255723 @default.
- W2000810902 cites W1676552347 @default.
- W2000810902 cites W1972662507 @default.
- W2000810902 cites W1974453255 @default.
- W2000810902 cites W1975935051 @default.
- W2000810902 cites W1983364832 @default.
- W2000810902 cites W1988140111 @default.
- W2000810902 cites W1994297893 @default.
- W2000810902 cites W1998399571 @default.
- W2000810902 cites W2012673871 @default.
- W2000810902 cites W2013822448 @default.
- W2000810902 cites W2018938122 @default.
- W2000810902 cites W2024082504 @default.
- W2000810902 cites W2032355985 @default.
- W2000810902 cites W2037732452 @default.
- W2000810902 cites W2040708213 @default.
- W2000810902 cites W2049351243 @default.
- W2000810902 cites W2060540225 @default.
- W2000810902 cites W2066606526 @default.
- W2000810902 cites W2068078373 @default.
- W2000810902 cites W2076293036 @default.
- W2000810902 cites W2090834590 @default.
- W2000810902 cites W2091089627 @default.
- W2000810902 cites W2095609079 @default.
- W2000810902 cites W2107284490 @default.
- W2000810902 cites W2111087635 @default.
- W2000810902 cites W2114882772 @default.
- W2000810902 cites W2129071761 @default.
- W2000810902 cites W2130325614 @default.
- W2000810902 cites W2131417778 @default.
- W2000810902 cites W2131846894 @default.
- W2000810902 cites W2136922672 @default.
- W2000810902 cites W2142634143 @default.
- W2000810902 cites W2146351185 @default.
- W2000810902 cites W2151727180 @default.
- W2000810902 cites W2156163116 @default.
- W2000810902 cites W2171783810 @default.
- W2000810902 cites W2613634265 @default.
- W2000810902 cites W2970930881 @default.
- W2000810902 doi "https://doi.org/10.1016/j.ins.2015.01.038" @default.
- W2000810902 hasPublicationYear "2015" @default.
- W2000810902 type Work @default.
- W2000810902 sameAs 2000810902 @default.
- W2000810902 citedByCount "12" @default.
- W2000810902 countsByYear W20008109022015 @default.
- W2000810902 countsByYear W20008109022016 @default.
- W2000810902 countsByYear W20008109022017 @default.
- W2000810902 countsByYear W20008109022018 @default.
- W2000810902 countsByYear W20008109022019 @default.
- W2000810902 countsByYear W20008109022020 @default.
- W2000810902 crossrefType "journal-article" @default.
- W2000810902 hasAuthorship W2000810902A5031755593 @default.
- W2000810902 hasAuthorship W2000810902A5044918612 @default.
- W2000810902 hasAuthorship W2000810902A5061110835 @default.
- W2000810902 hasAuthorship W2000810902A5065124717 @default.
- W2000810902 hasAuthorship W2000810902A5085386606 @default.
- W2000810902 hasConcept C104317684 @default.
- W2000810902 hasConcept C108583219 @default.
- W2000810902 hasConcept C138885662 @default.
- W2000810902 hasConcept C14551309 @default.
- W2000810902 hasConcept C153180895 @default.
- W2000810902 hasConcept C154945302 @default.
- W2000810902 hasConcept C17744445 @default.
- W2000810902 hasConcept C185592680 @default.
- W2000810902 hasConcept C199539241 @default.
- W2000810902 hasConcept C2776321320 @default.
- W2000810902 hasConcept C2776359362 @default.
- W2000810902 hasConcept C2776401178 @default.
- W2000810902 hasConcept C2781238097 @default.
- W2000810902 hasConcept C31972630 @default.
- W2000810902 hasConcept C41008148 @default.
- W2000810902 hasConcept C41895202 @default.
- W2000810902 hasConcept C55493867 @default.
- W2000810902 hasConcept C64876066 @default.
- W2000810902 hasConcept C66746571 @default.
- W2000810902 hasConcept C82990744 @default.
- W2000810902 hasConcept C94625758 @default.
- W2000810902 hasConceptScore W2000810902C104317684 @default.
- W2000810902 hasConceptScore W2000810902C108583219 @default.
- W2000810902 hasConceptScore W2000810902C138885662 @default.
- W2000810902 hasConceptScore W2000810902C14551309 @default.
- W2000810902 hasConceptScore W2000810902C153180895 @default.
- W2000810902 hasConceptScore W2000810902C154945302 @default.
- W2000810902 hasConceptScore W2000810902C17744445 @default.
- W2000810902 hasConceptScore W2000810902C185592680 @default.
- W2000810902 hasConceptScore W2000810902C199539241 @default.
- W2000810902 hasConceptScore W2000810902C2776321320 @default.