Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000815356> ?p ?o ?g. }
- W2000815356 endingPage "94" @default.
- W2000815356 startingPage "85" @default.
- W2000815356 abstract "G e n e t i c molecular markers are DNA segments that behave as landmarks for genome analysis. These segments usually represent variant or polymorphic sites that can be identified using general strategies such as molecular hybridization or enzymatic amplification of DNA. For years, DNA-based diagnostic markers have been used in general organismal identification and in the construction of genetic linkage maps. (1) The widely used restriction fragment length polymorphisms (RFLPs), for example, are molecular markers identified by endonuclease restriction and blot hybridization of DNA. (z) DNA amplification using PCR (3'4) has also been used extensively in many applications to study polymorphic loci, like hypervariable minisatellites (s) or microsatellites harboring simple sequence repeats, (6-8) and to generate sequence-tagged sites (STSs) (9) for genetic and physical mapping. Several strategies involving DNA replication, DNA ligation, or RNA transcription have been used for in vitro amplification of nucleic acids. (1~ However, PCR remains the most widely accepted amplification tool. Primer-directed amplification of DNA, at first used in PCR to amplify cognate regions present at very low levels in the genome, has extended DNA analysis to regions adjacent to sequenced DNA segments, to unknown DNA, and even to the study of RNA-expressed sequences. (~s-~7) Amplification strategies can be grouped according to the mechanism of the amplification process (Table 1). Amplification with specific primers in the PCR, for example, is a determinate process that requires prior knowledge of the template sequence and targets usually one defined amplification site. Similarly, amplification of interspersed repetitive sequences (IRS), like Alu-PCR (18) or REP-PCR, (19) are determinate processes that target multiple sites of defined sequence in both DNA strands. In contrast, amplification with degenerate primers in random indeterminate amplification processes, like random primed amplification (RPA), (2~ primer-extension preamplification (PEP), (21) and random PCR (rPCR), (22) take advantage of stochastic annealing events that randomly amplify nucleic acid stretches or even whole genomes by targeting sites of a noncognate nature. These random DNA amplification procedures are generally used for radioactive or fluorescent labeling of nucleic acids, to increase the amount of DNA in the construction of representative cDNA libraries, or for PCR typing of single haploid cells. Other kinds of amplification processes, although still determinate, do not require prior knowledge of template sequence and can target single or multiple sites in a genome or template molecule. These strategies can use either one arbitrary primer in conjunction with a specific primer (23) or one or more arbitrary primers (24-26) to study single or multiple amplicons, respectively, and can even be extended to the analysis of RNA populations. (27-28) In particular, strategies like gene-walking PCR (23) and differential cDNA PCR (27) study specific template regions arbitrary in length but juxtaposed to a known DNA segment defining a specific primer. Like anchored PCR, (29) these hemispecific reactions allow analysis of unknown genomic regions corresponding to mRNA sequences, or adjacent to STSs or sequenced stretches of DNA." @default.
- W2000815356 created "2016-06-24" @default.
- W2000815356 creator A5026404241 @default.
- W2000815356 date "1993-10-01" @default.
- W2000815356 modified "2023-09-24" @default.
- W2000815356 title "Amplifying DNA with arbitrary oligonucleotide primers." @default.
- W2000815356 cites W1499552914 @default.
- W2000815356 cites W1549050218 @default.
- W2000815356 cites W1560153625 @default.
- W2000815356 cites W1561322379 @default.
- W2000815356 cites W1566879987 @default.
- W2000815356 cites W1568159422 @default.
- W2000815356 cites W1773088849 @default.
- W2000815356 cites W1942550133 @default.
- W2000815356 cites W1961077450 @default.
- W2000815356 cites W1963633445 @default.
- W2000815356 cites W1963953102 @default.
- W2000815356 cites W1967229951 @default.
- W2000815356 cites W1967365465 @default.
- W2000815356 cites W1970518407 @default.
- W2000815356 cites W1973046335 @default.
- W2000815356 cites W1976554748 @default.
- W2000815356 cites W1976608804 @default.
- W2000815356 cites W1978368163 @default.
- W2000815356 cites W1979388953 @default.
- W2000815356 cites W1982682630 @default.
- W2000815356 cites W1987061468 @default.
- W2000815356 cites W1987834144 @default.
- W2000815356 cites W1988589933 @default.
- W2000815356 cites W1989017078 @default.
- W2000815356 cites W1989242908 @default.
- W2000815356 cites W1996250426 @default.
- W2000815356 cites W1999031673 @default.
- W2000815356 cites W1999102617 @default.
- W2000815356 cites W2000368509 @default.
- W2000815356 cites W2001466592 @default.
- W2000815356 cites W2004483969 @default.
- W2000815356 cites W2007443977 @default.
- W2000815356 cites W2008023178 @default.
- W2000815356 cites W2008282869 @default.
- W2000815356 cites W2008297641 @default.
- W2000815356 cites W2010412079 @default.
- W2000815356 cites W2010522675 @default.
- W2000815356 cites W2010933912 @default.
- W2000815356 cites W2013514054 @default.
- W2000815356 cites W2017250487 @default.
- W2000815356 cites W2021673452 @default.
- W2000815356 cites W2023046494 @default.
- W2000815356 cites W2026384794 @default.
- W2000815356 cites W2032390041 @default.
- W2000815356 cites W2032893841 @default.
- W2000815356 cites W2037986847 @default.
- W2000815356 cites W2040237566 @default.
- W2000815356 cites W2048267064 @default.
- W2000815356 cites W2052392225 @default.
- W2000815356 cites W2052532932 @default.
- W2000815356 cites W2053733950 @default.
- W2000815356 cites W2055050002 @default.
- W2000815356 cites W2057343377 @default.
- W2000815356 cites W2058746265 @default.
- W2000815356 cites W2061784450 @default.
- W2000815356 cites W2062756489 @default.
- W2000815356 cites W2064063117 @default.
- W2000815356 cites W2072180899 @default.
- W2000815356 cites W2072194704 @default.
- W2000815356 cites W2078846682 @default.
- W2000815356 cites W2080490975 @default.
- W2000815356 cites W2082317013 @default.
- W2000815356 cites W2088415798 @default.
- W2000815356 cites W2090604846 @default.
- W2000815356 cites W2090824272 @default.
- W2000815356 cites W2092778194 @default.
- W2000815356 cites W2092935383 @default.
- W2000815356 cites W2093990748 @default.
- W2000815356 cites W2096822099 @default.
- W2000815356 cites W2101749263 @default.
- W2000815356 cites W2106047667 @default.
- W2000815356 cites W2117686311 @default.
- W2000815356 cites W2126139054 @default.
- W2000815356 cites W2127302486 @default.
- W2000815356 cites W2128349000 @default.
- W2000815356 cites W2128766870 @default.
- W2000815356 cites W2142539585 @default.
- W2000815356 cites W2143434988 @default.
- W2000815356 cites W2143770994 @default.
- W2000815356 cites W2145903120 @default.
- W2000815356 cites W2147184989 @default.
- W2000815356 cites W2148312059 @default.
- W2000815356 cites W2156843275 @default.
- W2000815356 cites W2160508777 @default.
- W2000815356 cites W2165488261 @default.
- W2000815356 cites W2165639777 @default.
- W2000815356 cites W2171114940 @default.
- W2000815356 cites W2172789080 @default.
- W2000815356 cites W3195964607 @default.
- W2000815356 cites W4234900541 @default.
- W2000815356 doi "https://doi.org/10.1101/gr.3.2.85" @default.
- W2000815356 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8268791" @default.