Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000843310> ?p ?o ?g. }
- W2000843310 endingPage "211" @default.
- W2000843310 startingPage "91" @default.
- W2000843310 abstract "The behavior of charged interfaces in contact with aqueous solutions has, in recent years, become of great interest in electrochemistry, colloid science and biophysics. This topic is closely connected with the state of hydrated ions which are accumulated at such interfaces due to electrostatic and specific adsorption forces. The state of water at the interface of its liquid phase with its vapor (air), non-conducting or semi-conducting solids (oxides, AgI etc.), and with charged and uncharged metallic phases (electrodes, is examined. From the thermodynamic point of view, the excess entropy of water at the air/water and electrode/water interfaces provides specially useful information on the state of water at these boundaries. At the air/water interface, Stefan's ratio provides interesting information on the state of bonding and coordination in the interphase in relation to that in the bulk. The surface excess entropy of liquids, including water, is shown to be a function of the cohesive energy density of the fluid. The surface excess entropies and energies are related in a compensating way (compensation principle). The evidence for long-range structuring of water at interfaces is critically examined; it is concluded that little sound thermodynamic or other evidence exists for this supposed phenomenon. In the case of charged metal interfaces, the state of water has been treated at three levels in terms of (a) continuum dielectric theory; (b) H2O dipole orientation and (c) polarization and orientation of H-bonded clusters of water molecules. The models on which these treatments are based are critically compared in relation to recent conclusions on interactions and structure in the bulk water solvent itself. The inner-layer capacitance contribution, which charge-dependent orientation of water molecules gives rise to, is examined in relation to (a) experimental evidence for H2O dipole orientation given by studies of displacement of adsorbed water by non-polar organic molecules; (b) work-function and potential of zero charge changes; and (c) effects arising from interaction between hydration co-spheres of adsorbed ions in the double-layer amongst themselves (Gurney co-sphere effect) and between the ion co-spheres and the oriented water layer at the metal. Hitherto, treatments of the inner region of the double-layer have been restricted, on the one hand, to behavior arising from ion adsorption and two-dimensional ionic interaction with little reference to the water layer and, on the other, to behavior associated only with solvent molecule or cluster orientation, neglecting the presence of ions. It is shown that neither of these types of treatment can be realistic, as cosphere interactions between the adsorbed ions and with the oriented water layer at the metal surface will normally be of major importance in the properties of the double-layer and give rise to the well-known ion-specific inner-layer capacitance behavior of electrodes in aqueous electrolytic solutions. The state of ions at metal interfaces is also determined by the so-called electrosorption valency factor, γ, which measures the extent of charge-transfer involved in an adsorption or ion-deposition process. γ then determines the extent of local hydration of chemisorbed ions and their influence on the oriented water layer. Models for the adsorption of ions and water at colloid and polyelectrolyte interfaces are also examined. Unlike the case of metal interfaces where the charge on the metal side is delocalized, the behavior of water and ions at charged colloids is better treated in terms of an array of water-shared ion pairs, mobile or immobile, depending on the origin of the charge on the colloid." @default.
- W2000843310 created "2016-06-24" @default.
- W2000843310 creator A5089825488 @default.
- W2000843310 date "1977-09-01" @default.
- W2000843310 modified "2023-09-27" @default.
- W2000843310 title "The state of water and hydrated ions at interfaces" @default.
- W2000843310 cites W1558868165 @default.
- W2000843310 cites W1569067384 @default.
- W2000843310 cites W1584082643 @default.
- W2000843310 cites W1606307109 @default.
- W2000843310 cites W1632682241 @default.
- W2000843310 cites W1678484621 @default.
- W2000843310 cites W181544251 @default.
- W2000843310 cites W1816450589 @default.
- W2000843310 cites W1963811303 @default.
- W2000843310 cites W1966174544 @default.
- W2000843310 cites W1967059005 @default.
- W2000843310 cites W1967171755 @default.
- W2000843310 cites W1969361460 @default.
- W2000843310 cites W1969368934 @default.
- W2000843310 cites W1970982181 @default.
- W2000843310 cites W1971412202 @default.
- W2000843310 cites W1971536390 @default.
- W2000843310 cites W1972624442 @default.
- W2000843310 cites W1973345480 @default.
- W2000843310 cites W1976100626 @default.
- W2000843310 cites W1976932455 @default.
- W2000843310 cites W1979255636 @default.
- W2000843310 cites W1979825890 @default.
- W2000843310 cites W1981094755 @default.
- W2000843310 cites W1981448282 @default.
- W2000843310 cites W1982071322 @default.
- W2000843310 cites W1982540498 @default.
- W2000843310 cites W1982721218 @default.
- W2000843310 cites W1983601669 @default.
- W2000843310 cites W1984325264 @default.
- W2000843310 cites W1984627151 @default.
- W2000843310 cites W1985322639 @default.
- W2000843310 cites W1987867481 @default.
- W2000843310 cites W1988228080 @default.
- W2000843310 cites W1988239306 @default.
- W2000843310 cites W1988458026 @default.
- W2000843310 cites W1991251314 @default.
- W2000843310 cites W1991608276 @default.
- W2000843310 cites W1992210899 @default.
- W2000843310 cites W1992513474 @default.
- W2000843310 cites W1993291658 @default.
- W2000843310 cites W1993299482 @default.
- W2000843310 cites W1995016520 @default.
- W2000843310 cites W1995597192 @default.
- W2000843310 cites W1996589943 @default.
- W2000843310 cites W1998325965 @default.
- W2000843310 cites W1998986867 @default.
- W2000843310 cites W2000751855 @default.
- W2000843310 cites W2001589686 @default.
- W2000843310 cites W2003013803 @default.
- W2000843310 cites W2003277559 @default.
- W2000843310 cites W2003299724 @default.
- W2000843310 cites W2003553602 @default.
- W2000843310 cites W2003690420 @default.
- W2000843310 cites W2004291098 @default.
- W2000843310 cites W2004899614 @default.
- W2000843310 cites W2005124657 @default.
- W2000843310 cites W2005198857 @default.
- W2000843310 cites W2005294752 @default.
- W2000843310 cites W2005594203 @default.
- W2000843310 cites W2005877813 @default.
- W2000843310 cites W2007061866 @default.
- W2000843310 cites W2010226275 @default.
- W2000843310 cites W2011720164 @default.
- W2000843310 cites W2014974793 @default.
- W2000843310 cites W2015863987 @default.
- W2000843310 cites W2016540952 @default.
- W2000843310 cites W2017417570 @default.
- W2000843310 cites W2017735061 @default.
- W2000843310 cites W2018127341 @default.
- W2000843310 cites W2019372996 @default.
- W2000843310 cites W2019497544 @default.
- W2000843310 cites W2021349598 @default.
- W2000843310 cites W2021658442 @default.
- W2000843310 cites W2023510930 @default.
- W2000843310 cites W2023572261 @default.
- W2000843310 cites W2024196744 @default.
- W2000843310 cites W2024841790 @default.
- W2000843310 cites W2025655630 @default.
- W2000843310 cites W2029654375 @default.
- W2000843310 cites W2032434230 @default.
- W2000843310 cites W2032838399 @default.
- W2000843310 cites W2032844149 @default.
- W2000843310 cites W2033363774 @default.
- W2000843310 cites W2033396938 @default.
- W2000843310 cites W2033529067 @default.
- W2000843310 cites W2035310356 @default.
- W2000843310 cites W2035662927 @default.
- W2000843310 cites W2035874334 @default.
- W2000843310 cites W2035927216 @default.
- W2000843310 cites W2038413178 @default.
- W2000843310 cites W2038821510 @default.