Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000851475> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2000851475 endingPage "R466" @default.
- W2000851475 startingPage "R465" @default.
- W2000851475 abstract "Innate immunity is mediated by a variety of different, non-rearranging receptors and soluble molecules that recognize and facilitate the elimination of a wide range of pathogens [1.Medzhitov R. Janeway Jr., C.A. Decoding the patterns of self and nonself by the innate immune system.Science. 2002; 296: 298-300Crossref PubMed Scopus (1665) Google Scholar]. Immunoglobulin (Ig)-type variable (V) region-containing chitin-binding proteins (VCBPs) found in the protochordate amphioxus, which diverged from the vertebrate lineage before the emergence of adaptive immunity, show structural characteristics of innate immune receptors [2.Cannon J.P. Haire R.N. Litman G.W. Identification of diversified immunoglobulin-like variable region-containing genes in a protochordate.Nat. Immunol. 2002; 3: 1200-1207Crossref PubMed Scopus (166) Google Scholar]. Here we describe a very high degree of regionalized hypervariability in one family of VCBPs at the level of the individual germline, producing a unique repertoire of proteins in every animal so far analyzed. In species with large populations, such as amphioxus, extensive polymorphisms may compensate for the absence of somatic modification in the maintenance of immune receptor diversity. The diversified VCBPs in the amphioxus Branchiostoma floridae, a cephalochordate, are soluble proteins consisting of two Ig-type V regions joined to a carboxy-terminal chitin-binding domain [2.Cannon J.P. Haire R.N. Litman G.W. Identification of diversified immunoglobulin-like variable region-containing genes in a protochordate.Nat. Immunol. 2002; 3: 1200-1207Crossref PubMed Scopus (166) Google Scholar]. Although their ligands are unknown, VCBPs are likely candidates for innate immune receptors and represent the only example of an innate receptor in which the functional unit is a hyperdiversified Ig-type V region. VCBPs are distributed in at least five families and are expressed specifically and abundantly in the gut. Regionalized peptide sequence hypervariability was noted in the V regions of pooled amphioxus VCBP2 cDNAs [2.Cannon J.P. Haire R.N. Litman G.W. Identification of diversified immunoglobulin-like variable region-containing genes in a protochordate.Nat. Immunol. 2002; 3: 1200-1207Crossref PubMed Scopus (166) Google Scholar]. The hypervariable region is centered ∼18 residues amino-terminal to the first intradomain cysteine and does not correspond to any of the known complementarity-determining regions of the rearranging antigen-binding receptors found in jawed vertebrates. However, the basis for the hypervariation is not clear. The hypervariable region of the amino-terminal V region of VCBP2 has been characterized in genomic DNA from individual animals collected in the same local geographical area. The germline of every animal encodes a unique VCBP2 receptor repertoire. In a parallel investigation, a 17-fold representative bacterial artificial chromosome library (CHORI-302) constructed from a single reference animal was screened and six VCBP2 family genes were identified, consistent with previous Southern blot analyses [2.Cannon J.P. Haire R.N. Litman G.W. Identification of diversified immunoglobulin-like variable region-containing genes in a protochordate.Nat. Immunol. 2002; 3: 1200-1207Crossref PubMed Scopus (166) Google Scholar]. In sum, a total of 43 different peptides are encoded across the amplified region of VCBP2 by only 13 different animals. The most pronounced differences occur across a segment of ∼12–15 residues within a 23–30 residue-encoding amplicon (Figure 1). In the majority of cases, any two animals share no more than two specific VCBP2 hypervariable sequences; however, four pairs of animals share three specific hypervariable sequences. Amplicons encoding more conserved regions of the amino-terminal V region of VCBP2 and defensin, an unrelated innate immunity gene, lack extensive polymorphic differences. Non-systematic studies carried out with additional animals revealed further VCBP2 diversity, implying a still larger gene pool. The localized differences in both length and peptide sequence in the hypervariable region of soluble VCBP2 molecules resemble the junctional variation seen in antigen-binding receptors after combinatorial rearrangement; however, comparisons of cDNA sequences to germline genes amplified from 2 of the 13 specimens indicate that the hyperdiversity in VCBP2 is not derived somatically. High levels of polymorphism have been described previously for other Ig gene superfamily transmembrane molecules. However, in the killer cell Ig-like receptors (KIRs), variation tends to occur throughout the molecule, and in the major histocompatibility complex (MHC) class I and II molecules, variation in the peptide-binding domains is pronounced but is not generally associated with length polymorphism [3.Trowsdale J. Parham P. Mini-review: defense strategies and immunity-related genes.Eur. J. Immunol. 2004; 34: 7-17Crossref PubMed Scopus (148) Google Scholar, 4.Uhrberg M. Valiante N.M. Shum B.P. Shilling H.G. Lienert-Weidenbach K. Corliss B. Tyan D. Lanier L.L. Parham P. Human diversity in killer cell inhibitory receptor genes.Immunity. 1997; 7: 753-763Abstract Full Text Full Text PDF PubMed Scopus (939) Google Scholar]. Innate immunity provides an immediate response to pathogenic invasion, a significant and shifting challenge within the marine microbial environment [5.Fuhrman J. Marine viruses and their biogeochemical and ecological effects.Nature. 1999; 399: 541-548Crossref PubMed Scopus (1623) Google Scholar] and a likely factor in the survival of the filter-feeding amphioxus. But recognition of molecular patterns on pathogens can be compromised by immune evasion. The ability of amphioxus, which comprises 70% of the total biomass in some ecosystems [6.Bloom S.A. Simon J.L. Hunter V.D. Animal-sediment relations and community analysis of a Florida estuary.Mar. Biol. 1972; 13: 43-56Google Scholar], to maintain a very high degree of receptor diversity by genetic hypervariation within its large population could provide an effective alternative to somatic diversity, a later acquisition of the vertebrate lineage. Increasing evidence points to innate immune receptor diversification as a means of maintaining resistance to pathogens. Maintenance of extensive variation in non-adaptive immune molecules among individuals, well characterized in the leucine-rich repeat plant R genes [7.Bergelson J. Kreitman M. Stahl E.A. Tian D. Evolutionary dynamics of plant R-genes.Science. 2001; 292: 2281-2285Crossref PubMed Scopus (400) Google Scholar] in which variation is regionalized, and in several Drosophila genes [8.Lazzaro B.P. Sceurman B.K. Clark A.G. Genetic basis of natural variation in D. melanogaster antibacterial immunity.Science. 2004; 303: 1873-1876Crossref PubMed Scopus (189) Google Scholar], can serve as an effective protective mechanism in the absence of adaptive immunity [9.Hamilton W.D. Axelrod R. Tanese R. Sexual reproduction as an adaptation to resist parasites (A review).Proc. Natl. Acad. Sci. USA. 1990; 87: 3566-3573Crossref PubMed Scopus (937) Google Scholar]. In this light, various strategies for diversifying innate receptors may have evolved independently in invertebrates, protochordates and jawless vertebrates before the acquisition of receptor gene rearrangement. Although the particular mechanism that gives rise to the observed genetic polymorphism in VCBP2 genes is unknown, hyperdiversification of the Ig superfamily and other receptors in chordates, either at the germline or somatic level, could have provided an advantageous bridge between innate and adaptive immune function until mechanisms emerged in the vertebrates that could generate and select for diversity of antigen-binding receptors. Supplemental data are available at http://www.current-biology.com/cgi/content/full/14/12/R465/DC1/ Thanks to R. Litman, K. Krumeich, B. Pryor, C. Amemiya, and T. Ota. Supported by NIH grant AI23338. Download .pdf (.04 MB) Help with pdf files Supplemental Data" @default.
- W2000851475 created "2016-06-24" @default.
- W2000851475 creator A5000539564 @default.
- W2000851475 creator A5004325289 @default.
- W2000851475 creator A5043256022 @default.
- W2000851475 creator A5065006252 @default.
- W2000851475 creator A5088392460 @default.
- W2000851475 date "2004-06-01" @default.
- W2000851475 modified "2023-10-17" @default.
- W2000851475 title "Individual protochordates have unique immune-type receptor repertoires" @default.
- W2000851475 cites W1976326910 @default.
- W2000851475 cites W1983151212 @default.
- W2000851475 cites W1987772873 @default.
- W2000851475 cites W2002225831 @default.
- W2000851475 cites W2015253560 @default.
- W2000851475 cites W2058749149 @default.
- W2000851475 cites W2062581776 @default.
- W2000851475 cites W2126317009 @default.
- W2000851475 cites W37763159 @default.
- W2000851475 doi "https://doi.org/10.1016/j.cub.2004.06.009" @default.
- W2000851475 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15203016" @default.
- W2000851475 hasPublicationYear "2004" @default.
- W2000851475 type Work @default.
- W2000851475 sameAs 2000851475 @default.
- W2000851475 citedByCount "67" @default.
- W2000851475 countsByYear W20008514752012 @default.
- W2000851475 countsByYear W20008514752013 @default.
- W2000851475 countsByYear W20008514752014 @default.
- W2000851475 countsByYear W20008514752015 @default.
- W2000851475 countsByYear W20008514752016 @default.
- W2000851475 countsByYear W20008514752017 @default.
- W2000851475 countsByYear W20008514752018 @default.
- W2000851475 countsByYear W20008514752019 @default.
- W2000851475 countsByYear W20008514752020 @default.
- W2000851475 countsByYear W20008514752021 @default.
- W2000851475 countsByYear W20008514752022 @default.
- W2000851475 crossrefType "journal-article" @default.
- W2000851475 hasAuthorship W2000851475A5000539564 @default.
- W2000851475 hasAuthorship W2000851475A5004325289 @default.
- W2000851475 hasAuthorship W2000851475A5043256022 @default.
- W2000851475 hasAuthorship W2000851475A5065006252 @default.
- W2000851475 hasAuthorship W2000851475A5088392460 @default.
- W2000851475 hasBestOaLocation W20008514751 @default.
- W2000851475 hasConcept C103474210 @default.
- W2000851475 hasConcept C170493617 @default.
- W2000851475 hasConcept C203014093 @default.
- W2000851475 hasConcept C54355233 @default.
- W2000851475 hasConcept C70721500 @default.
- W2000851475 hasConcept C78458016 @default.
- W2000851475 hasConcept C86803240 @default.
- W2000851475 hasConcept C8891405 @default.
- W2000851475 hasConceptScore W2000851475C103474210 @default.
- W2000851475 hasConceptScore W2000851475C170493617 @default.
- W2000851475 hasConceptScore W2000851475C203014093 @default.
- W2000851475 hasConceptScore W2000851475C54355233 @default.
- W2000851475 hasConceptScore W2000851475C70721500 @default.
- W2000851475 hasConceptScore W2000851475C78458016 @default.
- W2000851475 hasConceptScore W2000851475C86803240 @default.
- W2000851475 hasConceptScore W2000851475C8891405 @default.
- W2000851475 hasIssue "12" @default.
- W2000851475 hasLocation W20008514751 @default.
- W2000851475 hasLocation W20008514752 @default.
- W2000851475 hasOpenAccess W2000851475 @default.
- W2000851475 hasPrimaryLocation W20008514751 @default.
- W2000851475 hasRelatedWork W1514371506 @default.
- W2000851475 hasRelatedWork W2008585845 @default.
- W2000851475 hasRelatedWork W2015849747 @default.
- W2000851475 hasRelatedWork W2036284079 @default.
- W2000851475 hasRelatedWork W2038379097 @default.
- W2000851475 hasRelatedWork W2054236139 @default.
- W2000851475 hasRelatedWork W2133887142 @default.
- W2000851475 hasRelatedWork W2181182350 @default.
- W2000851475 hasRelatedWork W2766607882 @default.
- W2000851475 hasRelatedWork W3039232686 @default.
- W2000851475 hasVolume "14" @default.
- W2000851475 isParatext "false" @default.
- W2000851475 isRetracted "false" @default.
- W2000851475 magId "2000851475" @default.
- W2000851475 workType "article" @default.