Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000891479> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2000891479 endingPage "387" @default.
- W2000891479 startingPage "373" @default.
- W2000891479 abstract "Retrospective clinical datasets are often characterized by a relatively small sample size and many missing data. In this case, a common way for handling the missingness consists in discarding from the analysis patients with missing covariates, further reducing the sample size. Alternatively, if the mechanism that generated the missing allows, incomplete data can be imputed on the basis of the observed data, avoiding the reduction of the sample size and allowing methods to deal with complete data later on. Moreover, methodologies for data imputation might depend on the particular purpose and might achieve better results by considering specific characteristics of the domain. The problem of missing data treatment is studied in the context of survival tree analysis for the estimation of a prognostic patient stratification. Survival tree methods usually address this problem by using surrogate splits, that is, splitting rules that use other variables yielding similar results to the original ones. Instead, our methodology consists in modeling the dependencies among the clinical variables with a Bayesian network, which is then used to perform data imputation, thus allowing the survival tree to be applied on the completed dataset. The Bayesian network is directly learned from the incomplete data using a structural expectation–maximization (EM) procedure in which the maximization step is performed with an exact anytime method, so that the only source of approximation is due to the EM formulation itself. On both simulated and real data, our proposed methodology usually outperformed several existing methods for data imputation and the imputation so obtained improved the stratification estimated by the survival tree (especially with respect to using surrogate splits)." @default.
- W2000891479 created "2016-06-24" @default.
- W2000891479 creator A5004994425 @default.
- W2000891479 creator A5007403791 @default.
- W2000891479 creator A5009234092 @default.
- W2000891479 creator A5041042079 @default.
- W2000891479 creator A5066518317 @default.
- W2000891479 date "2016-01-01" @default.
- W2000891479 modified "2023-09-27" @default.
- W2000891479 title "Bayesian network data imputation with application to survival tree analysis" @default.
- W2000891479 cites W1501101670 @default.
- W2000891479 cites W1517993545 @default.
- W2000891479 cites W1603514996 @default.
- W2000891479 cites W1973526008 @default.
- W2000891479 cites W1978391225 @default.
- W2000891479 cites W1980485115 @default.
- W2000891479 cites W1986546598 @default.
- W2000891479 cites W2002949426 @default.
- W2000891479 cites W2035597599 @default.
- W2000891479 cites W2063882823 @default.
- W2000891479 cites W2064491951 @default.
- W2000891479 cites W2085999991 @default.
- W2000891479 cites W2093729382 @default.
- W2000891479 cites W2112173610 @default.
- W2000891479 cites W2123998733 @default.
- W2000891479 cites W2152977846 @default.
- W2000891479 cites W2157076315 @default.
- W2000891479 cites W2187668060 @default.
- W2000891479 cites W3122807153 @default.
- W2000891479 cites W4236354166 @default.
- W2000891479 doi "https://doi.org/10.1016/j.csda.2014.12.008" @default.
- W2000891479 hasPublicationYear "2016" @default.
- W2000891479 type Work @default.
- W2000891479 sameAs 2000891479 @default.
- W2000891479 citedByCount "19" @default.
- W2000891479 countsByYear W20008914792016 @default.
- W2000891479 countsByYear W20008914792017 @default.
- W2000891479 countsByYear W20008914792019 @default.
- W2000891479 countsByYear W20008914792020 @default.
- W2000891479 countsByYear W20008914792021 @default.
- W2000891479 countsByYear W20008914792022 @default.
- W2000891479 countsByYear W20008914792023 @default.
- W2000891479 crossrefType "journal-article" @default.
- W2000891479 hasAuthorship W2000891479A5004994425 @default.
- W2000891479 hasAuthorship W2000891479A5007403791 @default.
- W2000891479 hasAuthorship W2000891479A5009234092 @default.
- W2000891479 hasAuthorship W2000891479A5041042079 @default.
- W2000891479 hasAuthorship W2000891479A5066518317 @default.
- W2000891479 hasBestOaLocation W20008914792 @default.
- W2000891479 hasConcept C105795698 @default.
- W2000891479 hasConcept C107673813 @default.
- W2000891479 hasConcept C119043178 @default.
- W2000891479 hasConcept C119857082 @default.
- W2000891479 hasConcept C124101348 @default.
- W2000891479 hasConcept C129848803 @default.
- W2000891479 hasConcept C154945302 @default.
- W2000891479 hasConcept C182081679 @default.
- W2000891479 hasConcept C33724603 @default.
- W2000891479 hasConcept C33923547 @default.
- W2000891479 hasConcept C41008148 @default.
- W2000891479 hasConcept C49781872 @default.
- W2000891479 hasConcept C58041806 @default.
- W2000891479 hasConcept C9357733 @default.
- W2000891479 hasConceptScore W2000891479C105795698 @default.
- W2000891479 hasConceptScore W2000891479C107673813 @default.
- W2000891479 hasConceptScore W2000891479C119043178 @default.
- W2000891479 hasConceptScore W2000891479C119857082 @default.
- W2000891479 hasConceptScore W2000891479C124101348 @default.
- W2000891479 hasConceptScore W2000891479C129848803 @default.
- W2000891479 hasConceptScore W2000891479C154945302 @default.
- W2000891479 hasConceptScore W2000891479C182081679 @default.
- W2000891479 hasConceptScore W2000891479C33724603 @default.
- W2000891479 hasConceptScore W2000891479C33923547 @default.
- W2000891479 hasConceptScore W2000891479C41008148 @default.
- W2000891479 hasConceptScore W2000891479C49781872 @default.
- W2000891479 hasConceptScore W2000891479C58041806 @default.
- W2000891479 hasConceptScore W2000891479C9357733 @default.
- W2000891479 hasLocation W20008914791 @default.
- W2000891479 hasLocation W20008914792 @default.
- W2000891479 hasOpenAccess W2000891479 @default.
- W2000891479 hasPrimaryLocation W20008914791 @default.
- W2000891479 hasRelatedWork W1963410777 @default.
- W2000891479 hasRelatedWork W2000280255 @default.
- W2000891479 hasRelatedWork W2064569198 @default.
- W2000891479 hasRelatedWork W2065781992 @default.
- W2000891479 hasRelatedWork W2113676816 @default.
- W2000891479 hasRelatedWork W2136211363 @default.
- W2000891479 hasRelatedWork W2167187602 @default.
- W2000891479 hasRelatedWork W2276525470 @default.
- W2000891479 hasRelatedWork W2766180957 @default.
- W2000891479 hasRelatedWork W3094251544 @default.
- W2000891479 hasVolume "93" @default.
- W2000891479 isParatext "false" @default.
- W2000891479 isRetracted "false" @default.
- W2000891479 magId "2000891479" @default.
- W2000891479 workType "article" @default.