Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000893894> ?p ?o ?g. }
- W2000893894 endingPage "5007" @default.
- W2000893894 startingPage "4996" @default.
- W2000893894 abstract "Engineered nanoparticles (NPs) are in the same size category as atmospheric ultrafine particles, < 100 nm. Per given volume, both have high numbers and surface areas compared to larger particles. The high proportion of surface atoms/molecules can give rise to a greater chemical as well as biological activity, for example the induction of reactive oxygen species in cell-free medium as well as in cells. When inhaled as singlet particles, NPs of different sizes deposit efficiently in all regions of the respiratory tract by diffusion. A major difference to larger size particles is the propensity of NPs to translocate across cell barriers from the portal of entry (e.g., the respiratory tract) to secondary organs and to enter cells by various mechanisms and associate with subcellular structures. This makes NPs uniquely suitable for therapeutic and diagnostic uses, but it also leaves target organs such as the central nervous system (CNS) vulnerable to potential adverse effects (e.g., oxidative stress). Neuronal transport of NPs has been described, involving retrograde and anterograde movement in axons and dendrites as well as perineural translocation. This is of importance for access of inhaled NPs to the CNS via sensory nerves existing in the nasopharyngeal and tracheobronchial regions of the respiratory tract. The neuronal pathway circumvents the very tight blood brain barrier. In general, translocation rates of NP from the portal of entry into the blood compartment or the CNS are very low. Important modifiers of translocation are the physicochemical characteristics of NPs, most notably their size and surface properties, particularly surface chemistry. Primary surface coating (when NPs are manufactured) and secondary surface coating (adsorption of lipids/proteins occurring at the portal of entry and during subsequent translocation) can significantly alter NP biokinetics and their effects. Implications of species differences in respiratory tract anatomy, breathing pattern and brain anatomy for extrapolation to humans of NP effects observed in rodents need to be considered. Although there are anecdotal data indicating a causal relationship between long-term ultrafine particle exposures in ambient air (e.g., traffic related) or at the workplace (e.g., metal fumes) and resultant neurotoxic effects in humans, more studies are needed to test the hypothesis that inhaled nanoparticles cause neurodegenerative effects. Some but probably not the majority of NPs will have a significant toxicity (hazard) potential, and this will pose a significant risk if there is a sufficient exposure. The challenge is to identify such hazardous NPs and take appropriate measures to prevent exposure." @default.
- W2000893894 created "2016-06-24" @default.
- W2000893894 creator A5003008574 @default.
- W2000893894 creator A5016697206 @default.
- W2000893894 creator A5030076173 @default.
- W2000893894 date "2009-08-01" @default.
- W2000893894 modified "2023-10-16" @default.
- W2000893894 title "Nanoparticles and the Brain: Cause for Concern?" @default.
- W2000893894 cites W1965097716 @default.
- W2000893894 cites W1970033499 @default.
- W2000893894 cites W1970712066 @default.
- W2000893894 cites W1975837510 @default.
- W2000893894 cites W1979093868 @default.
- W2000893894 cites W1988953645 @default.
- W2000893894 cites W1988973584 @default.
- W2000893894 cites W1991335253 @default.
- W2000893894 cites W1991659188 @default.
- W2000893894 cites W1993359579 @default.
- W2000893894 cites W1996112060 @default.
- W2000893894 cites W1998222014 @default.
- W2000893894 cites W2000185757 @default.
- W2000893894 cites W2004674357 @default.
- W2000893894 cites W2005120531 @default.
- W2000893894 cites W2005244767 @default.
- W2000893894 cites W2015649667 @default.
- W2000893894 cites W2023283179 @default.
- W2000893894 cites W2023791237 @default.
- W2000893894 cites W2026535486 @default.
- W2000893894 cites W2032146145 @default.
- W2000893894 cites W2041774340 @default.
- W2000893894 cites W2044735367 @default.
- W2000893894 cites W2050081396 @default.
- W2000893894 cites W2057910069 @default.
- W2000893894 cites W2069316295 @default.
- W2000893894 cites W2071401471 @default.
- W2000893894 cites W2093642159 @default.
- W2000893894 cites W2094522249 @default.
- W2000893894 cites W2114179943 @default.
- W2000893894 cites W2115123250 @default.
- W2000893894 cites W2118867675 @default.
- W2000893894 cites W2120166044 @default.
- W2000893894 cites W2146571394 @default.
- W2000893894 cites W2146620589 @default.
- W2000893894 cites W2147132559 @default.
- W2000893894 cites W2155118487 @default.
- W2000893894 cites W2427680985 @default.
- W2000893894 doi "https://doi.org/10.1166/jnn.2009.gr02" @default.
- W2000893894 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3804071" @default.
- W2000893894 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19928180" @default.
- W2000893894 hasPublicationYear "2009" @default.
- W2000893894 type Work @default.
- W2000893894 sameAs 2000893894 @default.
- W2000893894 citedByCount "274" @default.
- W2000893894 countsByYear W20008938942012 @default.
- W2000893894 countsByYear W20008938942013 @default.
- W2000893894 countsByYear W20008938942014 @default.
- W2000893894 countsByYear W20008938942015 @default.
- W2000893894 countsByYear W20008938942016 @default.
- W2000893894 countsByYear W20008938942017 @default.
- W2000893894 countsByYear W20008938942018 @default.
- W2000893894 countsByYear W20008938942019 @default.
- W2000893894 countsByYear W20008938942020 @default.
- W2000893894 countsByYear W20008938942021 @default.
- W2000893894 countsByYear W20008938942022 @default.
- W2000893894 countsByYear W20008938942023 @default.
- W2000893894 crossrefType "journal-article" @default.
- W2000893894 hasAuthorship W2000893894A5003008574 @default.
- W2000893894 hasAuthorship W2000893894A5016697206 @default.
- W2000893894 hasAuthorship W2000893894A5030076173 @default.
- W2000893894 hasBestOaLocation W20008938942 @default.
- W2000893894 hasConcept C104317684 @default.
- W2000893894 hasConcept C105702510 @default.
- W2000893894 hasConcept C12554922 @default.
- W2000893894 hasConcept C138626823 @default.
- W2000893894 hasConcept C1491633281 @default.
- W2000893894 hasConcept C155672457 @default.
- W2000893894 hasConcept C169760540 @default.
- W2000893894 hasConcept C171250308 @default.
- W2000893894 hasConcept C177779419 @default.
- W2000893894 hasConcept C192562407 @default.
- W2000893894 hasConcept C2778402981 @default.
- W2000893894 hasConcept C2779644171 @default.
- W2000893894 hasConcept C529278444 @default.
- W2000893894 hasConcept C534529494 @default.
- W2000893894 hasConcept C55493867 @default.
- W2000893894 hasConcept C86803240 @default.
- W2000893894 hasConcept C95444343 @default.
- W2000893894 hasConceptScore W2000893894C104317684 @default.
- W2000893894 hasConceptScore W2000893894C105702510 @default.
- W2000893894 hasConceptScore W2000893894C12554922 @default.
- W2000893894 hasConceptScore W2000893894C138626823 @default.
- W2000893894 hasConceptScore W2000893894C1491633281 @default.
- W2000893894 hasConceptScore W2000893894C155672457 @default.
- W2000893894 hasConceptScore W2000893894C169760540 @default.
- W2000893894 hasConceptScore W2000893894C171250308 @default.
- W2000893894 hasConceptScore W2000893894C177779419 @default.
- W2000893894 hasConceptScore W2000893894C192562407 @default.
- W2000893894 hasConceptScore W2000893894C2778402981 @default.