Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000899403> ?p ?o ?g. }
- W2000899403 endingPage "257" @default.
- W2000899403 startingPage "249" @default.
- W2000899403 abstract "Tree water use is a major component of the water balance in forested catchments of semi-arid areas, as more than 80% of the incoming rainfall may be used by overstory trees. Managers are unable to easily predict water use and thus water yield, for the majority of eucalypt-dominated catchments in south-east Australia, owing to the variety of dominant and co-dominant species, their distributions with respect to landform, and the lack of species- and landform-specific knowledge of the regulation of water use. Moreover, the costs incurred to quantify input variables for available complex, process-based models, generally encourage finding alternative approaches. This study tested the adequacy of using just two easily measured variables for estimating rates of tree water use, using a model derived from data-learning techniques. The inputs are (1) measured daily atmospheric demand for water and (2) potential incoming radiation derived from surface topography and solar declination. Artificial neural networks (ANNs) and genetic programming (GP) models were trained and validated using in situ observations of vapour pressure deficit (VPD) and estimates of potential solar radiation (Qpot), for a period of two years, at each of 10 forest stands across the high country of the states of New South Wales and Victoria. The models were tested using a random 50% of the collected data that was independent, i.e. not used in model development. Atmospheric demand was selected because it strongly affects tree water use irrespective of site and species. Potential solar radiation was selected as a proxy for radiation, because it is relatively easy to estimate for any location for which elevation data are available in digital format, and since radiation strongly controls photosynthesis (through stomatal behaviour) and thermal balance. Genetic programming resulted in models better able to predict rates of sap flux. A selected GP model was able to describe the relationship between tree sap flux, VPD, and potential radiation with good accuracy, and was used to map tree water use across the catchment." @default.
- W2000899403 created "2016-06-24" @default.
- W2000899403 creator A5015881678 @default.
- W2000899403 creator A5070045377 @default.
- W2000899403 creator A5077424024 @default.
- W2000899403 creator A5079699972 @default.
- W2000899403 date "2015-01-01" @default.
- W2000899403 modified "2023-10-09" @default.
- W2000899403 title "Mapping spatial and temporal variation in tree water use with an elevation model and gridded temperature data" @default.
- W2000899403 cites W1509600564 @default.
- W2000899403 cites W1529146523 @default.
- W2000899403 cites W1649711606 @default.
- W2000899403 cites W1744586729 @default.
- W2000899403 cites W1784197647 @default.
- W2000899403 cites W1973454915 @default.
- W2000899403 cites W1974182808 @default.
- W2000899403 cites W1975649382 @default.
- W2000899403 cites W1979769287 @default.
- W2000899403 cites W1981751431 @default.
- W2000899403 cites W1985052984 @default.
- W2000899403 cites W1988523040 @default.
- W2000899403 cites W1990505197 @default.
- W2000899403 cites W1996336648 @default.
- W2000899403 cites W1998863178 @default.
- W2000899403 cites W1999037692 @default.
- W2000899403 cites W2008801897 @default.
- W2000899403 cites W2009148751 @default.
- W2000899403 cites W2010934404 @default.
- W2000899403 cites W2011412119 @default.
- W2000899403 cites W2025401040 @default.
- W2000899403 cites W2027165709 @default.
- W2000899403 cites W2030336455 @default.
- W2000899403 cites W2034287547 @default.
- W2000899403 cites W2037366241 @default.
- W2000899403 cites W2058363013 @default.
- W2000899403 cites W2063711569 @default.
- W2000899403 cites W2074059126 @default.
- W2000899403 cites W2081105229 @default.
- W2000899403 cites W2082461446 @default.
- W2000899403 cites W2086200000 @default.
- W2000899403 cites W2086600058 @default.
- W2000899403 cites W2093275097 @default.
- W2000899403 cites W2096603997 @default.
- W2000899403 cites W2100724205 @default.
- W2000899403 cites W2101836973 @default.
- W2000899403 cites W2105899908 @default.
- W2000899403 cites W2107442209 @default.
- W2000899403 cites W2109888877 @default.
- W2000899403 cites W2114814430 @default.
- W2000899403 cites W2118654295 @default.
- W2000899403 cites W2131383972 @default.
- W2000899403 cites W2138988968 @default.
- W2000899403 cites W2139393540 @default.
- W2000899403 cites W2148792280 @default.
- W2000899403 cites W2156454517 @default.
- W2000899403 cites W2158086023 @default.
- W2000899403 cites W2158683657 @default.
- W2000899403 cites W2162504118 @default.
- W2000899403 cites W2171675708 @default.
- W2000899403 cites W3018770027 @default.
- W2000899403 doi "https://doi.org/10.1016/j.agrformet.2014.09.027" @default.
- W2000899403 hasPublicationYear "2015" @default.
- W2000899403 type Work @default.
- W2000899403 sameAs 2000899403 @default.
- W2000899403 citedByCount "10" @default.
- W2000899403 countsByYear W20008994032016 @default.
- W2000899403 countsByYear W20008994032017 @default.
- W2000899403 countsByYear W20008994032019 @default.
- W2000899403 countsByYear W20008994032021 @default.
- W2000899403 countsByYear W20008994032022 @default.
- W2000899403 countsByYear W20008994032023 @default.
- W2000899403 crossrefType "journal-article" @default.
- W2000899403 hasAuthorship W2000899403A5015881678 @default.
- W2000899403 hasAuthorship W2000899403A5070045377 @default.
- W2000899403 hasAuthorship W2000899403A5077424024 @default.
- W2000899403 hasAuthorship W2000899403A5079699972 @default.
- W2000899403 hasConcept C108497213 @default.
- W2000899403 hasConcept C127313418 @default.
- W2000899403 hasConcept C14331020 @default.
- W2000899403 hasConcept C149207113 @default.
- W2000899403 hasConcept C150772632 @default.
- W2000899403 hasConcept C157517311 @default.
- W2000899403 hasConcept C176783924 @default.
- W2000899403 hasConcept C183688256 @default.
- W2000899403 hasConcept C187320778 @default.
- W2000899403 hasConcept C18903297 @default.
- W2000899403 hasConcept C205649164 @default.
- W2000899403 hasConcept C2524010 @default.
- W2000899403 hasConcept C33923547 @default.
- W2000899403 hasConcept C37054046 @default.
- W2000899403 hasConcept C39432304 @default.
- W2000899403 hasConcept C58640448 @default.
- W2000899403 hasConcept C59822182 @default.
- W2000899403 hasConcept C66465714 @default.
- W2000899403 hasConcept C76886044 @default.
- W2000899403 hasConcept C86803240 @default.
- W2000899403 hasConcept C91586092 @default.
- W2000899403 hasConceptScore W2000899403C108497213 @default.