Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000900144> ?p ?o ?g. }
- W2000900144 endingPage "71" @default.
- W2000900144 startingPage "68" @default.
- W2000900144 abstract "The phenomenon of entanglement is a key concept in quantum information science. Atomic systems are promising candidates for quantum 'memories'. These in turn can be coupled and entangled by the exchange of photons, providing the basis of a quantum information processor. The signature of entanglement between remotely located atomic ensembles was recently demonstrated. Now Moehring et al. have achieved entanglement between two single-ion quantum memories separated by a metre. The use of single ions, rather than atomic ensembles, has certain advantages for subsequent quantum operations. Entanglement between two single-ion quantum memories separated by a metre has been achieved. The use of single ions, rather than atomic ensembles, has distinct advantages for subsequent quantum operations: long coherence times, enhanced stability, and ease of measurement without ejection of the ion from the trap. Quantum information science involves the storage, manipulation and communication of information encoded in quantum systems, where the phenomena of superposition and entanglement can provide enhancements over what is possible classically1,2. Large-scale quantum information processors require stable and addressable quantum memories, usually in the form of fixed quantum bits (qubits), and a means of transferring and entangling the quantum information between memories that may be separated by macroscopic or even geographic distances. Atomic systems are excellent quantum memories, because appropriate internal electronic states can coherently store qubits over very long timescales. Photons, on the other hand, are the natural platform for the distribution of quantum information between remote qubits, given their ability to traverse large distances with little perturbation. Recently, there has been considerable progress in coupling small samples of atomic gases through photonic channels2,3, including the entanglement between light and atoms4,5 and the observation of entanglement signatures between remotely located atomic ensembles6,7,8. In contrast to atomic ensembles, single-atom quantum memories allow the implementation of conditional quantum gates through photonic channels2,9, a key requirement for quantum computing. Along these lines, individual atoms have been coupled to photons in cavities2,10,11,12, and trapped atoms have been linked to emitted photons in free space13,14,15,16,17. Here we demonstrate the entanglement of two fixed single-atom quantum memories separated by one metre. Two remotely located trapped atomic ions each emit a single photon, and the interference and detection of these photons signals the entanglement of the atomic qubits. We characterize the entangled pair by directly measuring qubit correlations with near-perfect detection efficiency. Although this entanglement method is probabilistic, it is still in principle useful for subsequent quantum operations and scalable quantum information applications18,19,20." @default.
- W2000900144 created "2016-06-24" @default.
- W2000900144 creator A5005759724 @default.
- W2000900144 creator A5006319824 @default.
- W2000900144 creator A5034703407 @default.
- W2000900144 creator A5062217524 @default.
- W2000900144 creator A5066946697 @default.
- W2000900144 creator A5069456527 @default.
- W2000900144 creator A5077679496 @default.
- W2000900144 date "2007-09-01" @default.
- W2000900144 modified "2023-10-01" @default.
- W2000900144 title "Entanglement of single-atom quantum bits at a distance" @default.
- W2000900144 cites W1613274888 @default.
- W2000900144 cites W1678522483 @default.
- W2000900144 cites W1965648392 @default.
- W2000900144 cites W1989068240 @default.
- W2000900144 cites W1999822340 @default.
- W2000900144 cites W2013442365 @default.
- W2000900144 cites W2034194958 @default.
- W2000900144 cites W2036995039 @default.
- W2000900144 cites W2043433340 @default.
- W2000900144 cites W2060459069 @default.
- W2000900144 cites W2060887031 @default.
- W2000900144 cites W2062429526 @default.
- W2000900144 cites W2062491099 @default.
- W2000900144 cites W2062584998 @default.
- W2000900144 cites W2065893296 @default.
- W2000900144 cites W2069371442 @default.
- W2000900144 cites W2073781628 @default.
- W2000900144 cites W2079463010 @default.
- W2000900144 cites W2082566426 @default.
- W2000900144 cites W2093199434 @default.
- W2000900144 cites W2100962385 @default.
- W2000900144 cites W2106502150 @default.
- W2000900144 cites W2128368812 @default.
- W2000900144 cites W2131523720 @default.
- W2000900144 cites W2133157165 @default.
- W2000900144 cites W2148027589 @default.
- W2000900144 cites W2167010179 @default.
- W2000900144 cites W2963926992 @default.
- W2000900144 cites W3105945853 @default.
- W2000900144 doi "https://doi.org/10.1038/nature06118" @default.
- W2000900144 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17805290" @default.
- W2000900144 hasPublicationYear "2007" @default.
- W2000900144 type Work @default.
- W2000900144 sameAs 2000900144 @default.
- W2000900144 citedByCount "650" @default.
- W2000900144 countsByYear W20009001442012 @default.
- W2000900144 countsByYear W20009001442013 @default.
- W2000900144 countsByYear W20009001442014 @default.
- W2000900144 countsByYear W20009001442015 @default.
- W2000900144 countsByYear W20009001442016 @default.
- W2000900144 countsByYear W20009001442017 @default.
- W2000900144 countsByYear W20009001442018 @default.
- W2000900144 countsByYear W20009001442019 @default.
- W2000900144 countsByYear W20009001442020 @default.
- W2000900144 countsByYear W20009001442021 @default.
- W2000900144 countsByYear W20009001442022 @default.
- W2000900144 countsByYear W20009001442023 @default.
- W2000900144 crossrefType "journal-article" @default.
- W2000900144 hasAuthorship W2000900144A5005759724 @default.
- W2000900144 hasAuthorship W2000900144A5006319824 @default.
- W2000900144 hasAuthorship W2000900144A5034703407 @default.
- W2000900144 hasAuthorship W2000900144A5062217524 @default.
- W2000900144 hasAuthorship W2000900144A5066946697 @default.
- W2000900144 hasAuthorship W2000900144A5069456527 @default.
- W2000900144 hasAuthorship W2000900144A5077679496 @default.
- W2000900144 hasBestOaLocation W20009001442 @default.
- W2000900144 hasConcept C121040770 @default.
- W2000900144 hasConcept C121332964 @default.
- W2000900144 hasConcept C169699857 @default.
- W2000900144 hasConcept C183968085 @default.
- W2000900144 hasConcept C186468114 @default.
- W2000900144 hasConcept C190463098 @default.
- W2000900144 hasConcept C190474826 @default.
- W2000900144 hasConcept C203087015 @default.
- W2000900144 hasConcept C5320026 @default.
- W2000900144 hasConcept C62520636 @default.
- W2000900144 hasConcept C84114770 @default.
- W2000900144 hasConcept C89143813 @default.
- W2000900144 hasConceptScore W2000900144C121040770 @default.
- W2000900144 hasConceptScore W2000900144C121332964 @default.
- W2000900144 hasConceptScore W2000900144C169699857 @default.
- W2000900144 hasConceptScore W2000900144C183968085 @default.
- W2000900144 hasConceptScore W2000900144C186468114 @default.
- W2000900144 hasConceptScore W2000900144C190463098 @default.
- W2000900144 hasConceptScore W2000900144C190474826 @default.
- W2000900144 hasConceptScore W2000900144C203087015 @default.
- W2000900144 hasConceptScore W2000900144C5320026 @default.
- W2000900144 hasConceptScore W2000900144C62520636 @default.
- W2000900144 hasConceptScore W2000900144C84114770 @default.
- W2000900144 hasConceptScore W2000900144C89143813 @default.
- W2000900144 hasIssue "7158" @default.
- W2000900144 hasLocation W20009001441 @default.
- W2000900144 hasLocation W20009001442 @default.
- W2000900144 hasLocation W20009001443 @default.
- W2000900144 hasOpenAccess W2000900144 @default.
- W2000900144 hasPrimaryLocation W20009001441 @default.