Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000928953> ?p ?o ?g. }
- W2000928953 endingPage "998" @default.
- W2000928953 startingPage "990" @default.
- W2000928953 abstract "Nanotheranostics represents the next generation of medicine, fusing nanotechnology, therapeutics, and diagnostics. By integrating therapeutic and imaging agents into one nanoparticle, this new treatment strategy has the potential not only to detect and diagnose disease but also to treat and monitor the therapeutic response. This capability could have a profound impact in both the research setting as well as in a clinical setting. In the research setting, such a capability will allow research scientists to rapidly assess the performance of new therapeutics in an effort to iterate their designs for increased therapeutic index and efficacy. In the clinical setting, theranostics offers the ability to determine whether patients enrolling in clinical trials are responding, or are expected to respond, to a given therapy based on the hypothesis associated with the biological mechanisms being tested. If not, patients can be more quickly removed from the clinical trial and shifted to other therapeutic options. To be effective, these theranostic agents must be highly site specific. Optimally, they will carry relevant cargo, demonstrate controlled release of that cargo, and include imaging probes with a high signal-to-noise ratio.There are many biological barriers in the human body that challenge the efficacy of nanoparticle delivery vehicles. These barriers include, but are not limited to, the walls of blood vessels, the physical entrapment of particles in organs, and the removal of particles by phagocytic cells. The rapid clearance of circulating particles during systemic delivery is a major challenge; current research seeks to define key design parameters that govern the performance of nanocarriers, such as size, surface chemistry, elasticity, and shape. The effect of particle size and surface chemistry on in vivo biodistribution of nanocarriers has been extensively studied, and general guidelines have been established. Recently it has been documented that shape and elasticity can have a profound effect on the behavior of delivery vehicles. Thus, having the ability to independently control shape, size, matrix, surface chemistry, and modulus is crucial for designing successful delivery agents.In this Account, we describe the use of particle replication in nonwetting templates (PRINT) to fabricate shape- and size-specific microparticles and nanoparticles. A particular strength of the PRINT method is that it affords precise control over shape, size, surface chemistry, and modulus. We have demonstrated the loading of PRINT particles with chemotherapeutics, magnetic resonance contrast agents, and fluorophores. The surface properties of the PRINT particles can be easily modified with “stealth” poly(ethylene glycol) chains to increase blood circulation time, with targeting moieties for targeted delivery or with radiolabels for nuclear imaging. These particles have tremendous potential for applications in nanomedicine and diagnostics." @default.
- W2000928953 created "2016-06-24" @default.
- W2000928953 creator A5021447609 @default.
- W2000928953 creator A5037861013 @default.
- W2000928953 creator A5064952661 @default.
- W2000928953 creator A5090786744 @default.
- W2000928953 date "2011-08-02" @default.
- W2000928953 modified "2023-10-11" @default.
- W2000928953 title "PRINT: A Novel Platform Toward Shape and Size Specific Nanoparticle Theranostics" @default.
- W2000928953 cites W1967784078 @default.
- W2000928953 cites W1968937054 @default.
- W2000928953 cites W1972154409 @default.
- W2000928953 cites W1975670424 @default.
- W2000928953 cites W1977341513 @default.
- W2000928953 cites W1977479596 @default.
- W2000928953 cites W1986636697 @default.
- W2000928953 cites W1987769702 @default.
- W2000928953 cites W1990455420 @default.
- W2000928953 cites W1991173435 @default.
- W2000928953 cites W1996993122 @default.
- W2000928953 cites W1997236997 @default.
- W2000928953 cites W2003110090 @default.
- W2000928953 cites W2003845311 @default.
- W2000928953 cites W2011219093 @default.
- W2000928953 cites W2015497529 @default.
- W2000928953 cites W2017223816 @default.
- W2000928953 cites W2023980629 @default.
- W2000928953 cites W2025628768 @default.
- W2000928953 cites W2032298077 @default.
- W2000928953 cites W2032760352 @default.
- W2000928953 cites W2035697316 @default.
- W2000928953 cites W2041521061 @default.
- W2000928953 cites W2043680485 @default.
- W2000928953 cites W2048622063 @default.
- W2000928953 cites W2054745605 @default.
- W2000928953 cites W2055991021 @default.
- W2000928953 cites W2056966258 @default.
- W2000928953 cites W2064349006 @default.
- W2000928953 cites W2065165216 @default.
- W2000928953 cites W2065565772 @default.
- W2000928953 cites W2071659125 @default.
- W2000928953 cites W2076614074 @default.
- W2000928953 cites W2079609666 @default.
- W2000928953 cites W2082218425 @default.
- W2000928953 cites W2082511916 @default.
- W2000928953 cites W2086439640 @default.
- W2000928953 cites W2087339674 @default.
- W2000928953 cites W2087854516 @default.
- W2000928953 cites W2089155556 @default.
- W2000928953 cites W2092201159 @default.
- W2000928953 cites W2099525573 @default.
- W2000928953 cites W2101312385 @default.
- W2000928953 cites W2103678678 @default.
- W2000928953 cites W2104558356 @default.
- W2000928953 cites W2111115146 @default.
- W2000928953 cites W2113972541 @default.
- W2000928953 cites W2114343111 @default.
- W2000928953 cites W2117630026 @default.
- W2000928953 cites W2125098243 @default.
- W2000928953 cites W2132005699 @default.
- W2000928953 cites W2133675582 @default.
- W2000928953 cites W2134626448 @default.
- W2000928953 cites W2142062174 @default.
- W2000928953 cites W2154964751 @default.
- W2000928953 cites W2158767493 @default.
- W2000928953 cites W2167310101 @default.
- W2000928953 cites W2469464984 @default.
- W2000928953 cites W4242601767 @default.
- W2000928953 doi "https://doi.org/10.1021/ar2000315" @default.
- W2000928953 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4157651" @default.
- W2000928953 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21809808" @default.
- W2000928953 hasPublicationYear "2011" @default.
- W2000928953 type Work @default.
- W2000928953 sameAs 2000928953 @default.
- W2000928953 citedByCount "259" @default.
- W2000928953 countsByYear W20009289532012 @default.
- W2000928953 countsByYear W20009289532013 @default.
- W2000928953 countsByYear W20009289532014 @default.
- W2000928953 countsByYear W20009289532015 @default.
- W2000928953 countsByYear W20009289532016 @default.
- W2000928953 countsByYear W20009289532017 @default.
- W2000928953 countsByYear W20009289532018 @default.
- W2000928953 countsByYear W20009289532019 @default.
- W2000928953 countsByYear W20009289532020 @default.
- W2000928953 countsByYear W20009289532021 @default.
- W2000928953 countsByYear W20009289532022 @default.
- W2000928953 countsByYear W20009289532023 @default.
- W2000928953 crossrefType "journal-article" @default.
- W2000928953 hasAuthorship W2000928953A5021447609 @default.
- W2000928953 hasAuthorship W2000928953A5037861013 @default.
- W2000928953 hasAuthorship W2000928953A5064952661 @default.
- W2000928953 hasAuthorship W2000928953A5090786744 @default.
- W2000928953 hasBestOaLocation W20009289532 @default.
- W2000928953 hasConcept C142724271 @default.
- W2000928953 hasConcept C171250308 @default.
- W2000928953 hasConcept C192562407 @default.
- W2000928953 hasConcept C19527891 @default.
- W2000928953 hasConcept C41008148 @default.