Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000934863> ?p ?o ?g. }
- W2000934863 endingPage "385" @default.
- W2000934863 startingPage "363" @default.
- W2000934863 abstract "This paper, the second of two parts, presents three novel finite element case studies to demonstrate the importance of normal-tangential coupling in cohesive zone models (CZMs) for the prediction of mixed-mode interface debonding. Specifically, four new CZMs proposed in Part I of this study are implemented, namely the potential-based MP model and the non-potential-based NP1, NP2 and SMC models. For comparison, simulations are also performed for the well established potential-based Xu–Needleman (XN) model and the non-potential-based model of van den Bosch, Schreurs and Geers (BSG model). Case study 1: Debonding and rebonding of a biological cell from a cyclically deforming silicone substrate is simulated when the mode II work of separation is higher than the mode I work of separation at the cell-substrate interface. An active formulation for the contractility and remodelling of the cell cytoskeleton is implemented. It is demonstrated that when the XN potential function is used at the cell-substrate interface repulsive normal tractions are computed, preventing rebonding of significant regions of the cell to the substrate. In contrast, the proposed MP potential function at the cell-substrate interface results in negligible repulsive normal tractions, allowing for the prediction of experimentally observed patterns of cell cytoskeletal remodelling. Case study 2: Buckling of a coating from the compressive surface of a stent is simulated. It is demonstrated that during expansion of the stent the coating is initially compressed into the stent surface, while simultaneously undergoing tangential (shear) tractions at the coating-stent interface. It is demonstrated that when either the proposed NP1 or NP2 model is implemented at the stent-coating interface mixed-mode over-closure is correctly penalised. Further expansion of the stent results in the prediction of significant buckling of the coating from the stent surface, as observed experimentally. In contrast, the BSG model does not correctly penalise mixed-mode over-closure at the stent-coating interface, significantly altering the stress state in the coating and preventing the prediction of buckling. Case study 3: Application of a displacement to the base of a bi-layered composite arch results in a symmetric sinusoidal distribution of normal and tangential traction at the arch interface. The traction defined mode mixity at the interface ranges from pure mode II at the base of the arch to pure mode I at the top of the arch. It is demonstrated that predicted debonding patterns are highly sensitive to normal-tangential coupling terms in a CZM. The NP2, XN, and BSG models exhibit a strong bias towards mode I separation at the top of the arch, while the NP1 model exhibits a bias towards mode II debonding at the base of the arch. Only the SMC model provides mode-independent behaviour in the early stages of debonding. This case study provides a practical example of the importance of the behaviour of CZMs under conditions of traction controlled mode mixity, following from the theoretical analysis presented in Part I of this study." @default.
- W2000934863 created "2016-06-24" @default.
- W2000934863 creator A5013300929 @default.
- W2000934863 creator A5035407938 @default.
- W2000934863 creator A5044131663 @default.
- W2000934863 creator A5072228958 @default.
- W2000934863 date "2014-02-01" @default.
- W2000934863 modified "2023-10-16" @default.
- W2000934863 title "Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure–Part II: Finite element applications" @default.
- W2000934863 cites W1874432494 @default.
- W2000934863 cites W1967343849 @default.
- W2000934863 cites W1973718521 @default.
- W2000934863 cites W1974127321 @default.
- W2000934863 cites W1974398026 @default.
- W2000934863 cites W1975781184 @default.
- W2000934863 cites W1977982146 @default.
- W2000934863 cites W1980529918 @default.
- W2000934863 cites W1992332786 @default.
- W2000934863 cites W1993037302 @default.
- W2000934863 cites W1996001348 @default.
- W2000934863 cites W2001306030 @default.
- W2000934863 cites W2012415251 @default.
- W2000934863 cites W2017301986 @default.
- W2000934863 cites W2017723085 @default.
- W2000934863 cites W2023097882 @default.
- W2000934863 cites W2030582437 @default.
- W2000934863 cites W2051127506 @default.
- W2000934863 cites W2051787267 @default.
- W2000934863 cites W2052192720 @default.
- W2000934863 cites W2052509456 @default.
- W2000934863 cites W2052710417 @default.
- W2000934863 cites W2053804667 @default.
- W2000934863 cites W2057447487 @default.
- W2000934863 cites W2060790398 @default.
- W2000934863 cites W2064359587 @default.
- W2000934863 cites W2066370189 @default.
- W2000934863 cites W2067675246 @default.
- W2000934863 cites W2073093121 @default.
- W2000934863 cites W2076714894 @default.
- W2000934863 cites W2079809016 @default.
- W2000934863 cites W2080015164 @default.
- W2000934863 cites W2080025428 @default.
- W2000934863 cites W2081055856 @default.
- W2000934863 cites W2084332178 @default.
- W2000934863 cites W2086061329 @default.
- W2000934863 cites W2086072594 @default.
- W2000934863 cites W2087133021 @default.
- W2000934863 cites W2091510481 @default.
- W2000934863 cites W2091924772 @default.
- W2000934863 cites W2092706371 @default.
- W2000934863 cites W2099240330 @default.
- W2000934863 cites W2103157865 @default.
- W2000934863 cites W2105596988 @default.
- W2000934863 cites W2109728868 @default.
- W2000934863 cites W2111811045 @default.
- W2000934863 cites W2119475230 @default.
- W2000934863 cites W2123389161 @default.
- W2000934863 cites W2123843963 @default.
- W2000934863 cites W2128493116 @default.
- W2000934863 cites W2133445717 @default.
- W2000934863 cites W2135587046 @default.
- W2000934863 cites W2140658695 @default.
- W2000934863 cites W2141718957 @default.
- W2000934863 cites W2144872573 @default.
- W2000934863 cites W2152925911 @default.
- W2000934863 cites W2156530903 @default.
- W2000934863 cites W2167956058 @default.
- W2000934863 cites W2169253436 @default.
- W2000934863 cites W2981717623 @default.
- W2000934863 cites W4236792589 @default.
- W2000934863 doi "https://doi.org/10.1016/j.jmps.2013.08.019" @default.
- W2000934863 hasPublicationYear "2014" @default.
- W2000934863 type Work @default.
- W2000934863 sameAs 2000934863 @default.
- W2000934863 citedByCount "23" @default.
- W2000934863 countsByYear W20009348632013 @default.
- W2000934863 countsByYear W20009348632014 @default.
- W2000934863 countsByYear W20009348632015 @default.
- W2000934863 countsByYear W20009348632016 @default.
- W2000934863 countsByYear W20009348632017 @default.
- W2000934863 countsByYear W20009348632018 @default.
- W2000934863 countsByYear W20009348632019 @default.
- W2000934863 countsByYear W20009348632020 @default.
- W2000934863 countsByYear W20009348632021 @default.
- W2000934863 countsByYear W20009348632022 @default.
- W2000934863 countsByYear W20009348632023 @default.
- W2000934863 crossrefType "journal-article" @default.
- W2000934863 hasAuthorship W2000934863A5013300929 @default.
- W2000934863 hasAuthorship W2000934863A5035407938 @default.
- W2000934863 hasAuthorship W2000934863A5044131663 @default.
- W2000934863 hasAuthorship W2000934863A5072228958 @default.
- W2000934863 hasBestOaLocation W20009348632 @default.
- W2000934863 hasConcept C111368507 @default.
- W2000934863 hasConcept C121332964 @default.
- W2000934863 hasConcept C127313418 @default.
- W2000934863 hasConcept C127413603 @default.
- W2000934863 hasConcept C131584629 @default.
- W2000934863 hasConcept C135628077 @default.