Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000951627> ?p ?o ?g. }
- W2000951627 endingPage "397" @default.
- W2000951627 startingPage "388" @default.
- W2000951627 abstract "We have characterized, for the first time, motional modes of a protein dissolved in supercooled water: the flipping kinetics of phenylalanyl and tyrosinyl rings of the 6 kDa protein BPTI have been investigated by NMR at temperatures between −3 and −16.5 °C. At T = −15 °C, the ring-flipping rate constants of Tyr 23, Tyr 35, and Phe 45 are smaller than 2 s-1, i.e., flip-broadening of aromatic NMR lines is reduced beyond detection and averaging of NOEs through ring-flipping is abolished. This allows neat detection of distinct NOE sets for the individual aromatic 1H spins. In contrast, the rings of Phe 4, Tyr 10, Tyr 21, Phe 22, and Phe 33 are flipping rapidly on the chemical shift time scale with rate constants being in the range from approximately 102 to 105 s-1 even at T = −15 °C. Line width measurements in 2D [1H,1H]-NOESY showed that flipping of the Phe 4 and Phe 33 rings is, however, slowed to an extent that the onset of associated line broadening in the fast exchange limit is registered. The reduced ring-flipping rate constant of Phe 45 in supercooled water allowed very precise determination of Eyring activation enthalpy and entropy from cross relaxation suppressed 2D [1H,1H]-exchange spectroscopy. This yielded ΔH⧧ = 14 ± 0.5 kcal·mol-1 and ΔS⧧ = −4 ± 1 cal·mol-1·K-1, i.e., values close to those previously derived by Wagner and Wüthrich for the temperature range from 4 to 72 °C (ΔH⧧ = 16 ± 1 kcal·mol-1 and ΔS⧧ = 6 ± 2 cal·mol-1·K-1). The preservation of the so far uniquely low value for ΔS⧧ indicates that the distribution of internal motional modes associated with the ring flip of Phe 45 is hardly affected by lowering T well below 0 °C. Hence, if a globular protein does not cold denature, aromatic flipping rates, and thus likely also the rates of other conformational and/or chemical exchange processes occurring in supercooled water, can be expected to be well estimated from activation parameters obtained at ambient T. This is of keen interest to predict the impact of supercooling for future studies of biological macromolecules, and shows that our approach enables one to conduct NMR-based structural biology at below 0 °C in an unperturbed aqueous environment. A search of the BioMagResBank indicated that the overwhelming majority of the Phe and Tyr rings (>95%) are flipping rapidly on the chemical shift time scale at ambient T, while our data for BPTI and activation parameters available for ring-flipping in Iso-2-cytochrome c reveal that in these smaller proteins a total of six out of seventeen rings (∼35%) are “frozen in” at T = −15 °C. This suggests that a large fraction of Tyr and Phe rings in globular proteins that are flipping rapidly on the chemical shift time scale at ambient T can be effectively slowed in supercooled water. The present investigation demonstrates that supercooling of protein solutions appears to be an effective means to (i) harvest potential benefits of stalled ring-flipping for refining NMR solution structures, (ii) recruit additional aromatic rings for investigating protein dynamics, and (iii) use multiple slowly flipping rings to probe cold denaturation. The implications for NMR-based structural biology in supercooled water are addressed." @default.
- W2000951627 created "2016-06-24" @default.
- W2000951627 creator A5050790320 @default.
- W2000951627 creator A5057368442 @default.
- W2000951627 creator A5081652970 @default.
- W2000951627 creator A5090776437 @default.
- W2000951627 date "2000-12-30" @default.
- W2000951627 modified "2023-10-12" @default.
- W2000951627 title "Aromatic Ring-Flipping in Supercooled Water: Implications for NMR-Based Structural Biology of Proteins" @default.
- W2000951627 cites W1498615754 @default.
- W2000951627 cites W1519072074 @default.
- W2000951627 cites W1605898604 @default.
- W2000951627 cites W1966743338 @default.
- W2000951627 cites W1967559643 @default.
- W2000951627 cites W1970419869 @default.
- W2000951627 cites W1971927295 @default.
- W2000951627 cites W1983938282 @default.
- W2000951627 cites W1993187009 @default.
- W2000951627 cites W1995670684 @default.
- W2000951627 cites W1999884076 @default.
- W2000951627 cites W2000948557 @default.
- W2000951627 cites W2001648837 @default.
- W2000951627 cites W2002195659 @default.
- W2000951627 cites W2007640417 @default.
- W2000951627 cites W2015535339 @default.
- W2000951627 cites W2018612109 @default.
- W2000951627 cites W2022971270 @default.
- W2000951627 cites W2026667020 @default.
- W2000951627 cites W2047039535 @default.
- W2000951627 cites W2053185619 @default.
- W2000951627 cites W2055383294 @default.
- W2000951627 cites W2060999084 @default.
- W2000951627 cites W2066281409 @default.
- W2000951627 cites W2072132215 @default.
- W2000951627 cites W2073486807 @default.
- W2000951627 cites W2078394309 @default.
- W2000951627 cites W2085266415 @default.
- W2000951627 cites W2092740057 @default.
- W2000951627 cites W2109703770 @default.
- W2000951627 cites W2147281292 @default.
- W2000951627 cites W2156995522 @default.
- W2000951627 cites W2158105833 @default.
- W2000951627 cites W2160979208 @default.
- W2000951627 cites W2163575734 @default.
- W2000951627 cites W2169947235 @default.
- W2000951627 cites W218009710 @default.
- W2000951627 cites W2329156128 @default.
- W2000951627 cites W2949250147 @default.
- W2000951627 cites W2952654189 @default.
- W2000951627 doi "https://doi.org/10.1021/ja003220l" @default.
- W2000951627 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11456540" @default.
- W2000951627 hasPublicationYear "2000" @default.
- W2000951627 type Work @default.
- W2000951627 sameAs 2000951627 @default.
- W2000951627 citedByCount "69" @default.
- W2000951627 countsByYear W20009516272012 @default.
- W2000951627 countsByYear W20009516272013 @default.
- W2000951627 countsByYear W20009516272014 @default.
- W2000951627 countsByYear W20009516272015 @default.
- W2000951627 countsByYear W20009516272016 @default.
- W2000951627 countsByYear W20009516272017 @default.
- W2000951627 countsByYear W20009516272018 @default.
- W2000951627 countsByYear W20009516272019 @default.
- W2000951627 countsByYear W20009516272020 @default.
- W2000951627 countsByYear W20009516272021 @default.
- W2000951627 countsByYear W20009516272022 @default.
- W2000951627 countsByYear W20009516272023 @default.
- W2000951627 crossrefType "journal-article" @default.
- W2000951627 hasAuthorship W2000951627A5050790320 @default.
- W2000951627 hasAuthorship W2000951627A5057368442 @default.
- W2000951627 hasAuthorship W2000951627A5081652970 @default.
- W2000951627 hasAuthorship W2000951627A5090776437 @default.
- W2000951627 hasConcept C103319777 @default.
- W2000951627 hasConcept C112964491 @default.
- W2000951627 hasConcept C113196181 @default.
- W2000951627 hasConcept C121332964 @default.
- W2000951627 hasConcept C148898269 @default.
- W2000951627 hasConcept C15744967 @default.
- W2000951627 hasConcept C178790620 @default.
- W2000951627 hasConcept C185592680 @default.
- W2000951627 hasConcept C2776029896 @default.
- W2000951627 hasConcept C2779025318 @default.
- W2000951627 hasConcept C2780378348 @default.
- W2000951627 hasConcept C3288061 @default.
- W2000951627 hasConcept C48779969 @default.
- W2000951627 hasConcept C62520636 @default.
- W2000951627 hasConcept C66974803 @default.
- W2000951627 hasConcept C71240020 @default.
- W2000951627 hasConcept C77805123 @default.
- W2000951627 hasConcept C8010536 @default.
- W2000951627 hasConcept C93391505 @default.
- W2000951627 hasConcept C97355855 @default.
- W2000951627 hasConceptScore W2000951627C103319777 @default.
- W2000951627 hasConceptScore W2000951627C112964491 @default.
- W2000951627 hasConceptScore W2000951627C113196181 @default.
- W2000951627 hasConceptScore W2000951627C121332964 @default.
- W2000951627 hasConceptScore W2000951627C148898269 @default.
- W2000951627 hasConceptScore W2000951627C15744967 @default.