Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000969900> ?p ?o ?g. }
- W2000969900 endingPage "7" @default.
- W2000969900 startingPage "7" @default.
- W2000969900 abstract "Operation of the immune system is multivariate. Reduction of the dimensionality is essential to facilitate understanding of this complex biological system. One multi-dimensional facet of the immune system is the binding of epitopes to the MHC-I and MHC-II molecules by diverse populations of individuals. Prediction of such epitope binding is critical and several immunoinformatic strategies utilizing amino acid substitution matrices have been designed to develop predictive algorithms. Contemporaneously, computational and statistical tools have evolved to handle multivariate and megavariate analysis, but these have not been systematically deployed in prediction of MHC binding. Partial least squares analysis, principal component analysis, and associated regression techniques have become the norm in handling complex datasets in many fields. Over two decades ago Wold and colleagues showed that principal components of amino acids could be used to predict peptide binding to cellular receptors. We have applied this observation to the analysis of MHC binding, and to derivation of predictive methods applicable on a whole proteome scale.We show that amino acid principal components and partial least squares approaches can be utilized to visualize the underlying physicochemical properties of the MHC binding domain by using commercially available software. We further show the application of amino acid principal components to develop both linear partial least squares and non-linear neural network regression prediction algorithms for MHC-I and MHC-II molecules. Several visualization options for the output aid in understanding the underlying physicochemical properties, enable confirmation of earlier work on the relative importance of certain peptide residues to MHC binding, and also provide new insights into differences among MHC molecules. We compared both the linear and non-linear MHC binding prediction tools to several predictive tools currently available on the Internet.As opposed to the highly constrained user-interaction paradigms of web-server approaches, local computational approaches enable interactive analysis and visualization of complex multidimensional data using robust mathematical tools. Our work shows that prediction tools such as these can be constructed on the widely available JMP® platform, can operate in a spreadsheet environment on a desktop computer, and are capable of handling proteome-scale analysis with high throughput." @default.
- W2000969900 created "2016-06-24" @default.
- W2000969900 creator A5007144418 @default.
- W2000969900 creator A5033310887 @default.
- W2000969900 date "2010-01-01" @default.
- W2000969900 modified "2023-09-25" @default.
- W2000969900 title "An integrated approach to epitope analysis I: Dimensional reduction, visualization and prediction of MHC binding using amino acid principal components and regression approaches" @default.
- W2000969900 cites W1554663460 @default.
- W2000969900 cites W1596886411 @default.
- W2000969900 cites W2007810702 @default.
- W2000969900 cites W2014490015 @default.
- W2000969900 cites W2020564539 @default.
- W2000969900 cites W2023306209 @default.
- W2000969900 cites W2047442272 @default.
- W2000969900 cites W2048848017 @default.
- W2000969900 cites W2055132429 @default.
- W2000969900 cites W2060221922 @default.
- W2000969900 cites W2073503722 @default.
- W2000969900 cites W2097283546 @default.
- W2000969900 cites W2098750651 @default.
- W2000969900 cites W2100147914 @default.
- W2000969900 cites W2100350770 @default.
- W2000969900 cites W2103498243 @default.
- W2000969900 cites W2117057887 @default.
- W2000969900 cites W2120399005 @default.
- W2000969900 cites W2125732073 @default.
- W2000969900 cites W2134270883 @default.
- W2000969900 cites W2141210267 @default.
- W2000969900 cites W2143210482 @default.
- W2000969900 cites W2144166466 @default.
- W2000969900 cites W2155843307 @default.
- W2000969900 cites W2158714504 @default.
- W2000969900 cites W2167261147 @default.
- W2000969900 cites W2167339434 @default.
- W2000969900 cites W2327525319 @default.
- W2000969900 cites W243791935 @default.
- W2000969900 cites W2476598722 @default.
- W2000969900 cites W2790265983 @default.
- W2000969900 doi "https://doi.org/10.1186/1745-7580-6-7" @default.
- W2000969900 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2990731" @default.
- W2000969900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21044289" @default.
- W2000969900 hasPublicationYear "2010" @default.
- W2000969900 type Work @default.
- W2000969900 sameAs 2000969900 @default.
- W2000969900 citedByCount "24" @default.
- W2000969900 countsByYear W20009699002013 @default.
- W2000969900 countsByYear W20009699002014 @default.
- W2000969900 countsByYear W20009699002015 @default.
- W2000969900 countsByYear W20009699002016 @default.
- W2000969900 countsByYear W20009699002017 @default.
- W2000969900 countsByYear W20009699002018 @default.
- W2000969900 countsByYear W20009699002019 @default.
- W2000969900 countsByYear W20009699002020 @default.
- W2000969900 countsByYear W20009699002021 @default.
- W2000969900 countsByYear W20009699002023 @default.
- W2000969900 crossrefType "journal-article" @default.
- W2000969900 hasAuthorship W2000969900A5007144418 @default.
- W2000969900 hasAuthorship W2000969900A5033310887 @default.
- W2000969900 hasBestOaLocation W20009699001 @default.
- W2000969900 hasConcept C119857082 @default.
- W2000969900 hasConcept C124101348 @default.
- W2000969900 hasConcept C147483822 @default.
- W2000969900 hasConcept C154945302 @default.
- W2000969900 hasConcept C161584116 @default.
- W2000969900 hasConcept C195616568 @default.
- W2000969900 hasConcept C207936829 @default.
- W2000969900 hasConcept C22354355 @default.
- W2000969900 hasConcept C27438332 @default.
- W2000969900 hasConcept C41008148 @default.
- W2000969900 hasConcept C54355233 @default.
- W2000969900 hasConcept C70518039 @default.
- W2000969900 hasConcept C70721500 @default.
- W2000969900 hasConcept C86803240 @default.
- W2000969900 hasConceptScore W2000969900C119857082 @default.
- W2000969900 hasConceptScore W2000969900C124101348 @default.
- W2000969900 hasConceptScore W2000969900C147483822 @default.
- W2000969900 hasConceptScore W2000969900C154945302 @default.
- W2000969900 hasConceptScore W2000969900C161584116 @default.
- W2000969900 hasConceptScore W2000969900C195616568 @default.
- W2000969900 hasConceptScore W2000969900C207936829 @default.
- W2000969900 hasConceptScore W2000969900C22354355 @default.
- W2000969900 hasConceptScore W2000969900C27438332 @default.
- W2000969900 hasConceptScore W2000969900C41008148 @default.
- W2000969900 hasConceptScore W2000969900C54355233 @default.
- W2000969900 hasConceptScore W2000969900C70518039 @default.
- W2000969900 hasConceptScore W2000969900C70721500 @default.
- W2000969900 hasConceptScore W2000969900C86803240 @default.
- W2000969900 hasIssue "1" @default.
- W2000969900 hasLocation W20009699001 @default.
- W2000969900 hasLocation W20009699002 @default.
- W2000969900 hasLocation W20009699003 @default.
- W2000969900 hasLocation W20009699004 @default.
- W2000969900 hasOpenAccess W2000969900 @default.
- W2000969900 hasPrimaryLocation W20009699001 @default.
- W2000969900 hasRelatedWork W1558421445 @default.
- W2000969900 hasRelatedWork W2011204860 @default.
- W2000969900 hasRelatedWork W2017413763 @default.
- W2000969900 hasRelatedWork W2054246399 @default.