Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000976830> ?p ?o ?g. }
- W2000976830 endingPage "13121" @default.
- W2000976830 startingPage "13110" @default.
- W2000976830 abstract "The architecture of the distal heme pocket in hemoglobins and myoglobins can play an important role in controlling ligand binding dynamics. The size and polarity of the residues occupying the distal pocket may contribute steric and dielectric effects. In vertebrate systems, the distal pocket typically contains a “distal” histidine at position E7 and a leucine at position B10. There are several invertebrate organisms that have hemoglobins or myoglobins that display a pattern in which residues E7 and B10 are a glutamine and tyrosine, respectively. These proteins often have very high oxygen affinities stemming from very slow ligand off rates. In this study, two such hemoglobins, one from the nematode Ascaris suum and the other from the sulfide-fixing clam Lucina pectinata, are compared with respect to conformational and functional properties. Ultraviolet resonance Raman spectroscopy and visible resonance Raman spectroscopy are used to probe, respectively, the ligand-dependent hydrogen bonding pattern of the tyrosine residues and the proximal heme pocket interactions. Fourier transform infrared absorption spectroscopy is used to probe the dielectric properties of the distal heme pocket through the stretching frequency of carbon monoxide bound to the heme. Functionality is probed through the geminate rebinding of both CO and O2. The findings reveal two very different patterns indicative of two different mechanisms for achieving low oxygen off rates. In Hb Ascaris, a hydrogen bonding network that includes the E7 Gln, B10 Tyr, and oxygen bound to the heme results in a tight cage for the oxygen. Dissociation of the O2 requires a large amplitude conformational fluctuation that results both in a spontaneous dissociation of the oxygen through the loss of hydrogen bond stabilization and in an enhanced probability for ligand escape though the transient disruption and opening of the tight distal cage. In the case of the Hb from Lucina, there is no evidence for a tight cage. Instead the data support a model in which the hydrogen bonding network is far more tenuous and the equilibrium state of distal pocket is far more open and accessible than is the case in Ascaris. The results explain why Hb Ascaris has one of the highest oxygen affinities known (P50 ∼ 10-3 Torr) while Hb Lucina II has an oxygen affinity comparable to that of Mb (P50 = 0.13 Torr) even though both of these Hbs contain the B10 Tyr and E7 Gln motif and display very low oxygen off rates. The roles of water and proximal strain are discussed." @default.
- W2000976830 created "2016-06-24" @default.
- W2000976830 creator A5029314765 @default.
- W2000976830 creator A5029982946 @default.
- W2000976830 creator A5038980736 @default.
- W2000976830 creator A5057327107 @default.
- W2000976830 creator A5068651734 @default.
- W2000976830 creator A5071940002 @default.
- W2000976830 creator A5074590540 @default.
- W2000976830 creator A5076869167 @default.
- W2000976830 creator A5082184969 @default.
- W2000976830 creator A5090096201 @default.
- W2000976830 date "1997-10-01" @default.
- W2000976830 modified "2023-10-16" @default.
- W2000976830 title "A Comparison of Functional and Structural Consequences of the Tyrosine B10 and Glutamine E7 Motifs in Two Invertebrate Hemoglobins (<i>Ascaris</i> <i>suum</i> and <i>Lucina</i> <i>pectinata</i>)" @default.
- W2000976830 cites W1489383278 @default.
- W2000976830 cites W1506565709 @default.
- W2000976830 cites W1545686860 @default.
- W2000976830 cites W1601173997 @default.
- W2000976830 cites W1603773585 @default.
- W2000976830 cites W1972933297 @default.
- W2000976830 cites W1983595391 @default.
- W2000976830 cites W1987049517 @default.
- W2000976830 cites W1989098365 @default.
- W2000976830 cites W1989641921 @default.
- W2000976830 cites W1990103705 @default.
- W2000976830 cites W2006543553 @default.
- W2000976830 cites W2011929386 @default.
- W2000976830 cites W2018540610 @default.
- W2000976830 cites W2029826691 @default.
- W2000976830 cites W2036136843 @default.
- W2000976830 cites W2047199612 @default.
- W2000976830 cites W2047875903 @default.
- W2000976830 cites W2051556917 @default.
- W2000976830 cites W2054903510 @default.
- W2000976830 cites W2055777388 @default.
- W2000976830 cites W2064097348 @default.
- W2000976830 cites W2079459060 @default.
- W2000976830 cites W2089511382 @default.
- W2000976830 cites W2096700300 @default.
- W2000976830 cites W2120086270 @default.
- W2000976830 cites W2141601422 @default.
- W2000976830 cites W3005099576 @default.
- W2000976830 cites W4230158786 @default.
- W2000976830 cites W4233333869 @default.
- W2000976830 doi "https://doi.org/10.1021/bi971156n" @default.
- W2000976830 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9335574" @default.
- W2000976830 hasPublicationYear "1997" @default.
- W2000976830 type Work @default.
- W2000976830 sameAs 2000976830 @default.
- W2000976830 citedByCount "54" @default.
- W2000976830 countsByYear W20009768302012 @default.
- W2000976830 countsByYear W20009768302013 @default.
- W2000976830 countsByYear W20009768302015 @default.
- W2000976830 countsByYear W20009768302016 @default.
- W2000976830 countsByYear W20009768302017 @default.
- W2000976830 countsByYear W20009768302020 @default.
- W2000976830 countsByYear W20009768302021 @default.
- W2000976830 countsByYear W20009768302022 @default.
- W2000976830 crossrefType "journal-article" @default.
- W2000976830 hasAuthorship W2000976830A5029314765 @default.
- W2000976830 hasAuthorship W2000976830A5029982946 @default.
- W2000976830 hasAuthorship W2000976830A5038980736 @default.
- W2000976830 hasAuthorship W2000976830A5057327107 @default.
- W2000976830 hasAuthorship W2000976830A5068651734 @default.
- W2000976830 hasAuthorship W2000976830A5071940002 @default.
- W2000976830 hasAuthorship W2000976830A5074590540 @default.
- W2000976830 hasAuthorship W2000976830A5076869167 @default.
- W2000976830 hasAuthorship W2000976830A5082184969 @default.
- W2000976830 hasAuthorship W2000976830A5090096201 @default.
- W2000976830 hasConcept C116569031 @default.
- W2000976830 hasConcept C120665830 @default.
- W2000976830 hasConcept C121332964 @default.
- W2000976830 hasConcept C12554922 @default.
- W2000976830 hasConcept C165901193 @default.
- W2000976830 hasConcept C170493617 @default.
- W2000976830 hasConcept C181199279 @default.
- W2000976830 hasConcept C185592680 @default.
- W2000976830 hasConcept C20705724 @default.
- W2000976830 hasConcept C2776217839 @default.
- W2000976830 hasConcept C2778460671 @default.
- W2000976830 hasConcept C2779845534 @default.
- W2000976830 hasConcept C2781340169 @default.
- W2000976830 hasConcept C40003534 @default.
- W2000976830 hasConcept C515207424 @default.
- W2000976830 hasConcept C55493867 @default.
- W2000976830 hasConcept C71240020 @default.
- W2000976830 hasConcept C8010536 @default.
- W2000976830 hasConcept C86803240 @default.
- W2000976830 hasConcept C90856448 @default.
- W2000976830 hasConceptScore W2000976830C116569031 @default.
- W2000976830 hasConceptScore W2000976830C120665830 @default.
- W2000976830 hasConceptScore W2000976830C121332964 @default.
- W2000976830 hasConceptScore W2000976830C12554922 @default.
- W2000976830 hasConceptScore W2000976830C165901193 @default.
- W2000976830 hasConceptScore W2000976830C170493617 @default.
- W2000976830 hasConceptScore W2000976830C181199279 @default.
- W2000976830 hasConceptScore W2000976830C185592680 @default.