Matches in SemOpenAlex for { <https://semopenalex.org/work/W2000978429> ?p ?o ?g. }
- W2000978429 endingPage "4226" @default.
- W2000978429 startingPage "4210" @default.
- W2000978429 abstract "Breast density measurement has the potential to play an important role in individualized breast cancer risk assessment and prevention decisions. Routine evaluation of breast density will require the availability of a low-cost, nonionizing, three-dimensional (3-D) tomographic imaging modality that exploits a strong properties contrast between dense fibroglandular tissue and less dense adipose tissue. The purpose of this computational study is to investigate the performance of 3-D tomography using low-power microwaves to reconstruct the spatial distribution of breast tissue dielectric properties and to evaluate the modality for application to breast density characterization.State-of-the-art 3-D numerical breast phantoms that are realistic in both structural and dielectric properties are employed. The test phantoms include one sample from each of four classes of mammographic breast density. Since the properties of these phantoms are known exactly, these testbeds serve as a rigorous benchmark for the imaging results. The distorted Born iterative imaging method is applied to simulated array measurements of the numerical phantoms. The forward solver in the imaging algorithm employs the finite-difference time-domain method of solving the time-domain Maxwell's equations, and the dielectric profiles are estimated using an integral equation form of the Helmholtz wave equation. A multiple-frequency, bound-constrained, vector field inverse scattering solution is implemented that enables practical inversion of the large-scale 3-D problem. Knowledge of the frequency-dependent characteristic of breast tissues at microwave frequencies is exploited to obtain a parametric reconstruction of the dispersive dielectric profile of the interior of the breast. Imaging is performed on a high-resolution voxel basis and the solution is bounded by a known range of dielectric properties of the constituent breast tissues. The imaging method is validated using a breast phantom with a single, high-contrast interior scattering target in an otherwise homogeneous interior. The method is then used to image a set of realistic numerical breast phantoms of varied fibroglandular tissue density.Imaging results are presented for each numerical phantom and show robustness of the method relative to tissue density. In each case, the distribution of fibroglandular tissues is well represented in the resulting images. The resolution of the images at the frequencies employed is wider than the feature dimensions of the normal tissue structures, resulting in a smearing of their reconstruction.The results of this study support the utility of 3-D microwave tomography for imaging the distribution of normal tissues in the breast, specifically, dense fibroglandular tissue versus less dense adipose tissue, and suggest that further investigation of its use for volumetric evaluation of breast density is warranted." @default.
- W2000978429 created "2016-06-24" @default.
- W2000978429 creator A5008057220 @default.
- W2000978429 creator A5057049359 @default.
- W2000978429 creator A5057405159 @default.
- W2000978429 creator A5073887593 @default.
- W2000978429 date "2010-07-21" @default.
- W2000978429 modified "2023-10-06" @default.
- W2000978429 title "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique" @default.
- W2000978429 cites W1506342804 @default.
- W2000978429 cites W1594234351 @default.
- W2000978429 cites W1970534438 @default.
- W2000978429 cites W1997955884 @default.
- W2000978429 cites W1998762923 @default.
- W2000978429 cites W2003612096 @default.
- W2000978429 cites W2017944826 @default.
- W2000978429 cites W2030123043 @default.
- W2000978429 cites W2046369745 @default.
- W2000978429 cites W2047368428 @default.
- W2000978429 cites W2069472142 @default.
- W2000978429 cites W2069849147 @default.
- W2000978429 cites W2078318564 @default.
- W2000978429 cites W2084339341 @default.
- W2000978429 cites W2088461511 @default.
- W2000978429 cites W2090806562 @default.
- W2000978429 cites W2096016047 @default.
- W2000978429 cites W2096308937 @default.
- W2000978429 cites W2098620718 @default.
- W2000978429 cites W2099045701 @default.
- W2000978429 cites W2101422133 @default.
- W2000978429 cites W2102169296 @default.
- W2000978429 cites W2103578157 @default.
- W2000978429 cites W2105120592 @default.
- W2000978429 cites W2106874336 @default.
- W2000978429 cites W2108904466 @default.
- W2000978429 cites W2111198437 @default.
- W2000978429 cites W2115305326 @default.
- W2000978429 cites W2123090473 @default.
- W2000978429 cites W2124702218 @default.
- W2000978429 cites W2127107265 @default.
- W2000978429 cites W2127380782 @default.
- W2000978429 cites W2128034404 @default.
- W2000978429 cites W2128981844 @default.
- W2000978429 cites W2130992859 @default.
- W2000978429 cites W2132735969 @default.
- W2000978429 cites W2133308013 @default.
- W2000978429 cites W2136207971 @default.
- W2000978429 cites W2136872537 @default.
- W2000978429 cites W2139351620 @default.
- W2000978429 cites W2141100775 @default.
- W2000978429 cites W2141595148 @default.
- W2000978429 cites W2144270149 @default.
- W2000978429 cites W2145872944 @default.
- W2000978429 cites W2146848654 @default.
- W2000978429 cites W2148813721 @default.
- W2000978429 cites W2149308276 @default.
- W2000978429 cites W2150274370 @default.
- W2000978429 cites W2151211575 @default.
- W2000978429 cites W2152593146 @default.
- W2000978429 cites W2152913836 @default.
- W2000978429 cites W2158675073 @default.
- W2000978429 cites W2159400041 @default.
- W2000978429 cites W2160408484 @default.
- W2000978429 cites W2161663864 @default.
- W2000978429 cites W2166194465 @default.
- W2000978429 cites W2170315284 @default.
- W2000978429 cites W2170418314 @default.
- W2000978429 cites W4297672256 @default.
- W2000978429 doi "https://doi.org/10.1118/1.3443569" @default.
- W2000978429 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2921423" @default.
- W2000978429 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20879582" @default.
- W2000978429 hasPublicationYear "2010" @default.
- W2000978429 type Work @default.
- W2000978429 sameAs 2000978429 @default.
- W2000978429 citedByCount "215" @default.
- W2000978429 countsByYear W20009784292012 @default.
- W2000978429 countsByYear W20009784292013 @default.
- W2000978429 countsByYear W20009784292014 @default.
- W2000978429 countsByYear W20009784292015 @default.
- W2000978429 countsByYear W20009784292016 @default.
- W2000978429 countsByYear W20009784292017 @default.
- W2000978429 countsByYear W20009784292018 @default.
- W2000978429 countsByYear W20009784292019 @default.
- W2000978429 countsByYear W20009784292020 @default.
- W2000978429 countsByYear W20009784292021 @default.
- W2000978429 countsByYear W20009784292022 @default.
- W2000978429 countsByYear W20009784292023 @default.
- W2000978429 crossrefType "journal-article" @default.
- W2000978429 hasAuthorship W2000978429A5008057220 @default.
- W2000978429 hasAuthorship W2000978429A5057049359 @default.
- W2000978429 hasAuthorship W2000978429A5057405159 @default.
- W2000978429 hasAuthorship W2000978429A5073887593 @default.
- W2000978429 hasBestOaLocation W20009784292 @default.
- W2000978429 hasConcept C104293457 @default.
- W2000978429 hasConcept C120665830 @default.
- W2000978429 hasConcept C121332964 @default.
- W2000978429 hasConcept C121608353 @default.
- W2000978429 hasConcept C126322002 @default.