Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001015514> ?p ?o ?g. }
- W2001015514 endingPage "43" @default.
- W2001015514 startingPage "29" @default.
- W2001015514 abstract "Abstract We report the first quantitative study of the capture of colloidal natural organic matter (NOM) and NOM-complexed trace metals (V, Co, Cu, Ni) in speleothems. This study combines published NOM–metal dripwater speciation measurements with high-resolution laser ablation ICPMS (LA-ICPMS) and sub-annual stable isotope ratio (δ18O and δ13C), fluorescence and total organic carbon (TOC) analyses of a fast-growing hyperalkaline stalagmite (pH ∼11) from Poole’s Cavern, Derbyshire UK, which formed between 1997 and 2008 AD. We suggest that the findings reported here elucidate trace element variations arising from colloidal transport and calcite precipitation rate changes observed in multiple, natural speleothems deposited at ca. pH 7–8. We find that NOM–metal(aq) complexes on the boundary between colloidal and dissolved (∼1 nm diameter) show an annual cyclicity which is inversely correlated with the alkaline earth metals and is explained by calcite precipitation rate changes (as recorded by kinetically-fractionated stable isotopes). This relates to the strength of the NOM–metal complexation reaction, resulting in very strongly bound metals (Co in this system) essentially recording NOM co-precipitation (ternary complexation). More specifically, empirical partition coefficient (Kd) values between surface-reactive metals (V, Co, Cu, Ni) [expressed as ratio of trace element to Ca ratios in calcite and in solution] arise from variations in the ‘free’ fraction of total metal in aqueous solution (fm). Hence, differences in the preservation of each metal in calcite can be explained quantitatively by their complexation behaviour with aqueous NOM. Differences between inorganic Kd values and field measurements for metal partitioning into calcite occur where [free metal] ≪ [total metal] due to complexation reactions between metals and organic ligands (and potentially inorganic colloids). It follows that where fm ≈ 0, apparent inorganic Kd app values are also ≈0, but the true partition coefficient (Kd actual) is significantly higher. Importantly, the Kd of NOM–metal complexes [organic carbon–metal ratio) approaches 1 for the most stable aqueous complexes, as is shown here for Co, but has values of 24–150 for V, Ni and Cu. This implies that ternary surface complexation (metal–ligand co-adsorption) can occur (as for NOM–Co), but is the exception rather than the rule. We also demonstrate the potential for trace metals to record information on NOM composition as expressed through changing NOM–metal complexation patterns in dripwaters. Therefore, a suite of trace metals in stalagmites show variations clearly attributable to changes in organic ligand concentration and composition, and which potentially reflect the state of overlying surface ecosystems." @default.
- W2001015514 created "2016-06-24" @default.
- W2001015514 creator A5003488330 @default.
- W2001015514 creator A5029384789 @default.
- W2001015514 creator A5054784882 @default.
- W2001015514 creator A5068960093 @default.
- W2001015514 date "2014-03-01" @default.
- W2001015514 modified "2023-10-09" @default.
- W2001015514 title "Preservation of NOM-metal complexes in a modern hyperalkaline stalagmite: Implications for speleothem trace element geochemistry" @default.
- W2001015514 cites W1964892287 @default.
- W2001015514 cites W1965173526 @default.
- W2001015514 cites W1966729591 @default.
- W2001015514 cites W1972260028 @default.
- W2001015514 cites W1974670319 @default.
- W2001015514 cites W1976579496 @default.
- W2001015514 cites W1978790267 @default.
- W2001015514 cites W1993477894 @default.
- W2001015514 cites W1999902834 @default.
- W2001015514 cites W2019754334 @default.
- W2001015514 cites W2024994324 @default.
- W2001015514 cites W2029121502 @default.
- W2001015514 cites W2046020514 @default.
- W2001015514 cites W2047150190 @default.
- W2001015514 cites W2060341446 @default.
- W2001015514 cites W2061833640 @default.
- W2001015514 cites W2062112375 @default.
- W2001015514 cites W2072062807 @default.
- W2001015514 cites W2081326060 @default.
- W2001015514 cites W2088092704 @default.
- W2001015514 cites W2093376535 @default.
- W2001015514 cites W2114746685 @default.
- W2001015514 cites W2166461599 @default.
- W2001015514 doi "https://doi.org/10.1016/j.gca.2013.12.005" @default.
- W2001015514 hasPublicationYear "2014" @default.
- W2001015514 type Work @default.
- W2001015514 sameAs 2001015514 @default.
- W2001015514 citedByCount "28" @default.
- W2001015514 countsByYear W20010155142014 @default.
- W2001015514 countsByYear W20010155142015 @default.
- W2001015514 countsByYear W20010155142016 @default.
- W2001015514 countsByYear W20010155142018 @default.
- W2001015514 countsByYear W20010155142019 @default.
- W2001015514 countsByYear W20010155142020 @default.
- W2001015514 countsByYear W20010155142021 @default.
- W2001015514 countsByYear W20010155142022 @default.
- W2001015514 countsByYear W20010155142023 @default.
- W2001015514 crossrefType "journal-article" @default.
- W2001015514 hasAuthorship W2001015514A5003488330 @default.
- W2001015514 hasAuthorship W2001015514A5029384789 @default.
- W2001015514 hasAuthorship W2001015514A5054784882 @default.
- W2001015514 hasAuthorship W2001015514A5068960093 @default.
- W2001015514 hasBestOaLocation W20010155141 @default.
- W2001015514 hasConcept C107872376 @default.
- W2001015514 hasConcept C111368507 @default.
- W2001015514 hasConcept C127313418 @default.
- W2001015514 hasConcept C140345934 @default.
- W2001015514 hasConcept C156579228 @default.
- W2001015514 hasConcept C166957645 @default.
- W2001015514 hasConcept C171878925 @default.
- W2001015514 hasConcept C17409809 @default.
- W2001015514 hasConcept C178790620 @default.
- W2001015514 hasConcept C185592680 @default.
- W2001015514 hasConcept C1965285 @default.
- W2001015514 hasConcept C199289684 @default.
- W2001015514 hasConcept C205649164 @default.
- W2001015514 hasConcept C2778566039 @default.
- W2001015514 hasConcept C2778883040 @default.
- W2001015514 hasConcept C34682378 @default.
- W2001015514 hasConcept C544153396 @default.
- W2001015514 hasConceptScore W2001015514C107872376 @default.
- W2001015514 hasConceptScore W2001015514C111368507 @default.
- W2001015514 hasConceptScore W2001015514C127313418 @default.
- W2001015514 hasConceptScore W2001015514C140345934 @default.
- W2001015514 hasConceptScore W2001015514C156579228 @default.
- W2001015514 hasConceptScore W2001015514C166957645 @default.
- W2001015514 hasConceptScore W2001015514C171878925 @default.
- W2001015514 hasConceptScore W2001015514C17409809 @default.
- W2001015514 hasConceptScore W2001015514C178790620 @default.
- W2001015514 hasConceptScore W2001015514C185592680 @default.
- W2001015514 hasConceptScore W2001015514C1965285 @default.
- W2001015514 hasConceptScore W2001015514C199289684 @default.
- W2001015514 hasConceptScore W2001015514C205649164 @default.
- W2001015514 hasConceptScore W2001015514C2778566039 @default.
- W2001015514 hasConceptScore W2001015514C2778883040 @default.
- W2001015514 hasConceptScore W2001015514C34682378 @default.
- W2001015514 hasConceptScore W2001015514C544153396 @default.
- W2001015514 hasFunder F4320314756 @default.
- W2001015514 hasFunder F4320334631 @default.
- W2001015514 hasLocation W20010155141 @default.
- W2001015514 hasLocation W20010155142 @default.
- W2001015514 hasOpenAccess W2001015514 @default.
- W2001015514 hasPrimaryLocation W20010155141 @default.
- W2001015514 hasRelatedWork W1966035351 @default.
- W2001015514 hasRelatedWork W2001015514 @default.
- W2001015514 hasRelatedWork W2039844111 @default.
- W2001015514 hasRelatedWork W2156771808 @default.
- W2001015514 hasRelatedWork W2280155027 @default.
- W2001015514 hasRelatedWork W2611398469 @default.