Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001036734> ?p ?o ?g. }
- W2001036734 endingPage "389" @default.
- W2001036734 startingPage "359" @default.
- W2001036734 abstract "An optimal solution to the continuous relaxation of a mixed-integer 0-1 linear programming problem is defined to be persistent if the set of 0-1 variables realizing binary values retains those same binary values in at least one integer optimum. A mixed-integer 0-1 linear program is said to possess the persistency property, or equivalently to be persistent, if every optimal solution to the continuous relaxation is a persistent solution. We study the issue of persistency for a special family of mixed-integer 0-1 linear programming problems which derive from the linearization strategy of Sherali and Adams (1990). In particular, we first examine the hierarchy of linearizations which result from applying this strategy to the general class of unconstrained 0-1 polynomial programming problems, and then consider a class of specially-structured constrained problems. Our study of persistency differs from previous works in that we use the explicit algebraic representation of the convex hull of feasible binary solutions available at the highest level of this hierarchy as a tool for making inferences relative to optimal integer solutions from optimal continuous solutions. Each level of this hierarchy consists of a mixed-integer 0-1 linear program, and we provide, for any given optimal solution to the continuous relaxation of any member of this hierarchy, a set of sufficient conditions on the optimal dual multipliers for the solution to be persistent. These sufficient conditions turn out to be satisfied at every optimal solution of the quadratic level, and thus allow for the reformulation of any unconstrained 0-1 quadratic programming problem as a persistent mixed-integer linear program in a suitably-defined higher-dimensional space. We subsequently address the family of constrained 0-1 polynomial programs and use a projection operation to prove that a special family of 0-1 linear programs possesses the persistency property; included in this family is a generalization of the vertex packing problem that permits quadratic objective function coefficients. Unlike earlier published works on the vertex packing and related problems, our proofs do not rely on Balinski's (1965) extreme point characterization." @default.
- W2001036734 created "2016-06-24" @default.
- W2001036734 creator A5035313839 @default.
- W2001036734 creator A5043357545 @default.
- W2001036734 creator A5061029229 @default.
- W2001036734 date "1998-05-01" @default.
- W2001036734 modified "2023-10-14" @default.
- W2001036734 title "Persistency in 0-1 Polynomial Programming" @default.
- W2001036734 cites W1538436260 @default.
- W2001036734 cites W1992162584 @default.
- W2001036734 cites W1992428442 @default.
- W2001036734 cites W2005982472 @default.
- W2001036734 cites W2006293258 @default.
- W2001036734 cites W2013415302 @default.
- W2001036734 cites W2049143039 @default.
- W2001036734 cites W2056730665 @default.
- W2001036734 cites W2077783414 @default.
- W2001036734 cites W2078992232 @default.
- W2001036734 cites W2082752309 @default.
- W2001036734 cites W2090526848 @default.
- W2001036734 cites W2093128520 @default.
- W2001036734 cites W2167925113 @default.
- W2001036734 doi "https://doi.org/10.1287/moor.23.2.359" @default.
- W2001036734 hasPublicationYear "1998" @default.
- W2001036734 type Work @default.
- W2001036734 sameAs 2001036734 @default.
- W2001036734 citedByCount "29" @default.
- W2001036734 countsByYear W20010367342013 @default.
- W2001036734 countsByYear W20010367342014 @default.
- W2001036734 countsByYear W20010367342015 @default.
- W2001036734 countsByYear W20010367342016 @default.
- W2001036734 countsByYear W20010367342018 @default.
- W2001036734 countsByYear W20010367342019 @default.
- W2001036734 crossrefType "journal-article" @default.
- W2001036734 hasAuthorship W2001036734A5035313839 @default.
- W2001036734 hasAuthorship W2001036734A5043357545 @default.
- W2001036734 hasAuthorship W2001036734A5061029229 @default.
- W2001036734 hasConcept C11210021 @default.
- W2001036734 hasConcept C112680207 @default.
- W2001036734 hasConcept C121332964 @default.
- W2001036734 hasConcept C123558587 @default.
- W2001036734 hasConcept C126255220 @default.
- W2001036734 hasConcept C134306372 @default.
- W2001036734 hasConcept C147700949 @default.
- W2001036734 hasConcept C15744967 @default.
- W2001036734 hasConcept C158622935 @default.
- W2001036734 hasConcept C162324750 @default.
- W2001036734 hasConcept C177067428 @default.
- W2001036734 hasConcept C177264268 @default.
- W2001036734 hasConcept C199360897 @default.
- W2001036734 hasConcept C206194317 @default.
- W2001036734 hasConcept C2524010 @default.
- W2001036734 hasConcept C25360446 @default.
- W2001036734 hasConcept C2776029896 @default.
- W2001036734 hasConcept C31170391 @default.
- W2001036734 hasConcept C33923547 @default.
- W2001036734 hasConcept C34447519 @default.
- W2001036734 hasConcept C41008148 @default.
- W2001036734 hasConcept C41045048 @default.
- W2001036734 hasConcept C48372109 @default.
- W2001036734 hasConcept C56086750 @default.
- W2001036734 hasConcept C60033838 @default.
- W2001036734 hasConcept C62520636 @default.
- W2001036734 hasConcept C77805123 @default.
- W2001036734 hasConcept C81845259 @default.
- W2001036734 hasConcept C90119067 @default.
- W2001036734 hasConcept C94375191 @default.
- W2001036734 hasConcept C97137487 @default.
- W2001036734 hasConceptScore W2001036734C11210021 @default.
- W2001036734 hasConceptScore W2001036734C112680207 @default.
- W2001036734 hasConceptScore W2001036734C121332964 @default.
- W2001036734 hasConceptScore W2001036734C123558587 @default.
- W2001036734 hasConceptScore W2001036734C126255220 @default.
- W2001036734 hasConceptScore W2001036734C134306372 @default.
- W2001036734 hasConceptScore W2001036734C147700949 @default.
- W2001036734 hasConceptScore W2001036734C15744967 @default.
- W2001036734 hasConceptScore W2001036734C158622935 @default.
- W2001036734 hasConceptScore W2001036734C162324750 @default.
- W2001036734 hasConceptScore W2001036734C177067428 @default.
- W2001036734 hasConceptScore W2001036734C177264268 @default.
- W2001036734 hasConceptScore W2001036734C199360897 @default.
- W2001036734 hasConceptScore W2001036734C206194317 @default.
- W2001036734 hasConceptScore W2001036734C2524010 @default.
- W2001036734 hasConceptScore W2001036734C25360446 @default.
- W2001036734 hasConceptScore W2001036734C2776029896 @default.
- W2001036734 hasConceptScore W2001036734C31170391 @default.
- W2001036734 hasConceptScore W2001036734C33923547 @default.
- W2001036734 hasConceptScore W2001036734C34447519 @default.
- W2001036734 hasConceptScore W2001036734C41008148 @default.
- W2001036734 hasConceptScore W2001036734C41045048 @default.
- W2001036734 hasConceptScore W2001036734C48372109 @default.
- W2001036734 hasConceptScore W2001036734C56086750 @default.
- W2001036734 hasConceptScore W2001036734C60033838 @default.
- W2001036734 hasConceptScore W2001036734C62520636 @default.
- W2001036734 hasConceptScore W2001036734C77805123 @default.
- W2001036734 hasConceptScore W2001036734C81845259 @default.
- W2001036734 hasConceptScore W2001036734C90119067 @default.
- W2001036734 hasConceptScore W2001036734C94375191 @default.