Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001073669> ?p ?o ?g. }
- W2001073669 abstract "Abstract Background It becomes increasingly clear that our current taxonomy of clinical phenotypes is mixed with molecular heterogeneity. Of vital importance for refined clinical practice and improved intervention strategies is to define the hidden molecular distinct diseases using modern large-scale genomic approaches. Microarray omics technology has provided a powerful way to dissect hidden genetic heterogeneity of complex diseases. The aim of this study was thus to develop a bioinformatics approach to seek the transcriptional features leading to the hidden subtyping of a complex clinical phenotype. The basic strategy of the proposed method was to iteratively partition in two ways sample and feature space with super-paramagnetic clustering technique and to seek for hard and robust gene clusters that lead to a natural partition of disease samples and that have the highest functionally conceptual consensus evaluated with Gene Ontology. Results We applied the proposed method to two publicly available microarray datasets of diffuse large B-cell lymphoma (DLBCL), a notoriously heterogeneous phenotype. A feature subset of 30 genes (38 probes) derived from analysis of the first dataset consisting of 4026 genes and 42 DLBCL samples identified three categories of patients with very different five-year overall survival rates (70.59%, 44.44% and 14.29% respectively; p = 0.0017). Analysis of the second dataset consisting of 7129 genes and 58 DLBCL samples revealed a feature subset of 13 genes (16 probes) that not only replicated the findings of the important DLBCL genes (e.g. JAW1 and BCL7A ), but also identified three clinically similar subtypes (with 5-year overall survival rates of 63.13%, 34.92% and 15.38% respectively; p = 0.0009) to those identified in the first dataset. Finally, we built a multivariate Cox proportional-hazards prediction model for each feature subset and defined JAW1 as one of the most significant predictor ( p = 0.005 and 0.014; hazard ratios = 0.02 and 0.03, respectively for two datasets) for both DLBCL cohorts under study. Conclusion Our results showed that the proposed algorithm is a promising computational strategy for peeling off the hidden genetic heterogeneity based on transcriptionally profiling disease samples, which may lead to an improved diagnosis and treatment of cancers." @default.
- W2001073669 created "2016-06-24" @default.
- W2001073669 creator A5000508916 @default.
- W2001073669 creator A5027475930 @default.
- W2001073669 creator A5040240740 @default.
- W2001073669 creator A5041957721 @default.
- W2001073669 creator A5046645047 @default.
- W2001073669 creator A5076699095 @default.
- W2001073669 creator A5079738340 @default.
- W2001073669 creator A5089580482 @default.
- W2001073669 date "2007-09-22" @default.
- W2001073669 modified "2023-10-07" @default.
- W2001073669 title "Unravelling the hidden heterogeneities of diffuse large B-cell lymphoma based on coupled two-way clustering" @default.
- W2001073669 cites W1513910506 @default.
- W2001073669 cites W1538343442 @default.
- W2001073669 cites W1644749979 @default.
- W2001073669 cites W1965061252 @default.
- W2001073669 cites W1976564639 @default.
- W2001073669 cites W1988078905 @default.
- W2001073669 cites W2022756254 @default.
- W2001073669 cites W2037015973 @default.
- W2001073669 cites W2043154233 @default.
- W2001073669 cites W2043904301 @default.
- W2001073669 cites W2044702943 @default.
- W2001073669 cites W2055643760 @default.
- W2001073669 cites W2064208261 @default.
- W2001073669 cites W2079665010 @default.
- W2001073669 cites W2081378751 @default.
- W2001073669 cites W2081931663 @default.
- W2001073669 cites W2087684630 @default.
- W2001073669 cites W2097255042 @default.
- W2001073669 cites W2097413644 @default.
- W2001073669 cites W2099801548 @default.
- W2001073669 cites W2103017472 @default.
- W2001073669 cites W2109363337 @default.
- W2001073669 cites W2111360319 @default.
- W2001073669 cites W2113962581 @default.
- W2001073669 cites W2115580179 @default.
- W2001073669 cites W2116344879 @default.
- W2001073669 cites W2138218344 @default.
- W2001073669 cites W2139954541 @default.
- W2001073669 cites W2140065103 @default.
- W2001073669 cites W2144792853 @default.
- W2001073669 cites W2147246240 @default.
- W2001073669 cites W2150630892 @default.
- W2001073669 cites W2150926065 @default.
- W2001073669 cites W2152012752 @default.
- W2001073669 cites W2152491277 @default.
- W2001073669 cites W2154370832 @default.
- W2001073669 cites W2157840751 @default.
- W2001073669 cites W2158267770 @default.
- W2001073669 cites W2160637452 @default.
- W2001073669 cites W2167741208 @default.
- W2001073669 cites W2170040895 @default.
- W2001073669 cites W2170915361 @default.
- W2001073669 cites W2259802687 @default.
- W2001073669 cites W2416999725 @default.
- W2001073669 cites W2419400317 @default.
- W2001073669 doi "https://doi.org/10.1186/1471-2164-8-332" @default.
- W2001073669 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2082044" @default.
- W2001073669 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17888167" @default.
- W2001073669 hasPublicationYear "2007" @default.
- W2001073669 type Work @default.
- W2001073669 sameAs 2001073669 @default.
- W2001073669 citedByCount "7" @default.
- W2001073669 countsByYear W20010736692014 @default.
- W2001073669 countsByYear W20010736692021 @default.
- W2001073669 crossrefType "journal-article" @default.
- W2001073669 hasAuthorship W2001073669A5000508916 @default.
- W2001073669 hasAuthorship W2001073669A5027475930 @default.
- W2001073669 hasAuthorship W2001073669A5040240740 @default.
- W2001073669 hasAuthorship W2001073669A5041957721 @default.
- W2001073669 hasAuthorship W2001073669A5046645047 @default.
- W2001073669 hasAuthorship W2001073669A5076699095 @default.
- W2001073669 hasAuthorship W2001073669A5079738340 @default.
- W2001073669 hasAuthorship W2001073669A5089580482 @default.
- W2001073669 hasBestOaLocation W20010736691 @default.
- W2001073669 hasConcept C104317684 @default.
- W2001073669 hasConcept C114614502 @default.
- W2001073669 hasConcept C127716648 @default.
- W2001073669 hasConcept C150194340 @default.
- W2001073669 hasConcept C154945302 @default.
- W2001073669 hasConcept C186836561 @default.
- W2001073669 hasConcept C199360897 @default.
- W2001073669 hasConcept C203014093 @default.
- W2001073669 hasConcept C2778559949 @default.
- W2001073669 hasConcept C2779338263 @default.
- W2001073669 hasConcept C2987395477 @default.
- W2001073669 hasConcept C33923547 @default.
- W2001073669 hasConcept C41008148 @default.
- W2001073669 hasConcept C42812 @default.
- W2001073669 hasConcept C54355233 @default.
- W2001073669 hasConcept C60644358 @default.
- W2001073669 hasConcept C70721500 @default.
- W2001073669 hasConcept C73555534 @default.
- W2001073669 hasConcept C83852419 @default.
- W2001073669 hasConcept C86803240 @default.
- W2001073669 hasConcept C95371953 @default.
- W2001073669 hasConceptScore W2001073669C104317684 @default.
- W2001073669 hasConceptScore W2001073669C114614502 @default.