Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001128566> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2001128566 endingPage "1384" @default.
- W2001128566 startingPage "1380" @default.
- W2001128566 abstract "No AccessJournal of UrologyAdult Urology: Outcomes/Epidemiology/Socioeconomics1 Oct 2005MULTI-INSTITUTIONAL VALIDATION STUDY OF NEURAL NETWORKS TO PREDICT DURATION OF STAY AFTER LAPAROSCOPIC RADICAL/SIMPLE OR PARTIAL NEPHRECTOMY SIJO J. PAREKATTIL, INDERBIR S. GILL, ERIK P. CASTLE, SCOTT V. BURGESS, MELISSA M. WALLS, RAJU THOMAS, UDAYA KUMAR, JODY A. PURIFOY, CHRISTOPHER S. NG, YOUNG KANG, GERHARD J. FUCHS, ERIK S. WEISE, HOWARD N. WINFIELD, COSTAS LALLAS, and PAUL E. ANDREWS SIJO J. PAREKATTILSIJO J. PAREKATTIL More articles by this author , INDERBIR S. GILLINDERBIR S. GILL More articles by this author , ERIK P. CASTLEERIK P. CASTLE More articles by this author , SCOTT V. BURGESSSCOTT V. BURGESS More articles by this author , MELISSA M. WALLSMELISSA M. WALLS More articles by this author , RAJU THOMASRAJU THOMAS More articles by this author , UDAYA KUMARUDAYA KUMAR More articles by this author , JODY A. PURIFOYJODY A. PURIFOY More articles by this author , CHRISTOPHER S. NGCHRISTOPHER S. NG More articles by this author , YOUNG KANGYOUNG KANG More articles by this author , GERHARD J. FUCHSGERHARD J. FUCHS More articles by this author , ERIK S. WEISEERIK S. WEISE More articles by this author , HOWARD N. WINFIELDHOWARD N. WINFIELD More articles by this author , COSTAS LALLASCOSTAS LALLAS More articles by this author , and PAUL E. ANDREWSPAUL E. ANDREWS More articles by this author View All Author Informationhttps://doi.org/10.1097/01.ju.0000173921.67597.e8AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: We developed models to predict post-laparoscopic radical or simple nephrectomy (LapNx) and post-laparoscopic partial nephrectomy (LapPNx) hospital duration of stay (DOS). Materials and Methods: We performed a retrospective review (design group) of all 726 patients (July 1997 to April 2004) who underwent LapNx or LapPNx at the Cleveland Clinic Foundation (CCF). Preoperative findings were recorded. Neural network algorithms were designed to predict the DOS before surgery. The models were then tested on a separate 252 patients from 6 different institutions, namely Tulane University Medical School, University of Arkansas for Medical Sciences, Cedars-Sinai Medical Center, University of Iowa, Mayo Clinic at Scottsdale and CCF. Results: In the CCF design groups, the LapNx model accuracy was 73% to 74% and the LapPNx model 73% to 83%. Overall accuracy in the test groups at all 6 institutions was 72% (area under ROC 0.6 to 0.7) for the LapNx model and 52% to 81% (ROC 0.5 to 0.7) for the LapPNx model. Conclusions: The LapNx model provides 72% accuracy in predicting the DOS at all 6 institutions. The LapPNx model provided fair accuracy only at CCF and Tulane University Medical School. These models may streamline the delivery of care and continued testing will allow for further refinement. References 1 : Financial analysis of open versus laparoscopic radical nephrectomy and nephroureterectomy. J Urol2002; 167: 1757. Link, Google Scholar 2 : Financial analysis of needlescopic versus open adrenalectomy. J Urol1999; 162: 1264. Link, Google Scholar 3 : Cost comparison for laparoscopic nephrectomy and open nephrectomy: analysis of individual parameters. Urology2002; 59: 821. Google Scholar 4 : Cost containment in urology. Urology1995; 46: 14. Google Scholar 5 : Clinical care pathway for the management of ureteroneocystostomy in the pediatric urology population. J Urol1997; 158: 1221. Link, Google Scholar 6 : Artificial neural networks: opening the black box. Cancer2001; 91: 1615. Google Scholar 7 : On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. Stat Med2000; 19: 541. Google Scholar 8 : A neurocomputational model for prostate carcinoma detection. Cancer2003; 98: 1849. Google Scholar 9 : Artificial neural networks in pediatric urology: prediction of sonographic outcome following pyeloplasty. J Urol1998; 160: 980. Link, Google Scholar 10 : Computational tools for the modern andrologist. J Androl1996; 17: 462. Google Scholar 11 : Epidemiology, Biostatistics, and Preventive Medicine.. Philadelphia: W. B. Saunders Co.1996: 172. chapt. 113. Google Scholar 12 : Using and Understanding Medical Statistics. Basel: Karger1996: 136. chapt. 111. Google Scholar From the Cleveland Clinic Foundation, Cleveland, Ohio, Tulane University Medical School, New Orleans, Louisiana, University of Arkansas for Medical Sciences, Little Rock, Arkansas, Cedars-Sinai Medical Center, Los Angeles, California, University of Iowa, Iowa City, Iowa, and Mayo Clinic, Scottsdale, Arizona© 2005 by American Urological Association, Inc.FiguresReferencesRelatedDetails Volume 174Issue 4 Part 1October 2005Page: 1380-1384 Advertisement Copyright & Permissions© 2005 by American Urological Association, Inc.Keywordsprognosisneural networkslaparoscopynephrectomyMetricsAuthor Information SIJO J. PAREKATTIL More articles by this author INDERBIR S. GILL More articles by this author ERIK P. CASTLE More articles by this author SCOTT V. BURGESS More articles by this author MELISSA M. WALLS More articles by this author RAJU THOMAS More articles by this author UDAYA KUMAR More articles by this author JODY A. PURIFOY More articles by this author CHRISTOPHER S. NG More articles by this author YOUNG KANG More articles by this author GERHARD J. FUCHS More articles by this author ERIK S. WEISE More articles by this author HOWARD N. WINFIELD More articles by this author COSTAS LALLAS More articles by this author PAUL E. ANDREWS More articles by this author Expand All Advertisement PDF downloadLoading ..." @default.
- W2001128566 created "2016-06-24" @default.
- W2001128566 creator A5003894007 @default.
- W2001128566 creator A5004285397 @default.
- W2001128566 creator A5011407440 @default.
- W2001128566 creator A5016308856 @default.
- W2001128566 creator A5029609253 @default.
- W2001128566 creator A5033567152 @default.
- W2001128566 creator A5035755227 @default.
- W2001128566 creator A5038973155 @default.
- W2001128566 creator A5045987738 @default.
- W2001128566 creator A5047742848 @default.
- W2001128566 creator A5048772617 @default.
- W2001128566 creator A5064391529 @default.
- W2001128566 creator A5066680776 @default.
- W2001128566 creator A5072186558 @default.
- W2001128566 creator A5072396286 @default.
- W2001128566 date "2005-10-01" @default.
- W2001128566 modified "2023-09-27" @default.
- W2001128566 title "MULTI-INSTITUTIONAL VALIDATION STUDY OF NEURAL NETWORKS TO PREDICT DURATION OF STAY AFTER LAPAROSCOPIC RADICAL/SIMPLE OR PARTIAL NEPHRECTOMY" @default.
- W2001128566 cites W1979919012 @default.
- W2001128566 cites W1993012014 @default.
- W2001128566 cites W2008951758 @default.
- W2001128566 cites W2029577120 @default.
- W2001128566 cites W2044734436 @default.
- W2001128566 cites W2058874116 @default.
- W2001128566 cites W2118153550 @default.
- W2001128566 cites W4249028950 @default.
- W2001128566 cites W4321059349 @default.
- W2001128566 cites W4376595336 @default.
- W2001128566 doi "https://doi.org/10.1097/01.ju.0000173921.67597.e8" @default.
- W2001128566 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16813966" @default.
- W2001128566 hasPublicationYear "2005" @default.
- W2001128566 type Work @default.
- W2001128566 sameAs 2001128566 @default.
- W2001128566 citedByCount "3" @default.
- W2001128566 countsByYear W20011285662021 @default.
- W2001128566 crossrefType "journal-article" @default.
- W2001128566 hasAuthorship W2001128566A5003894007 @default.
- W2001128566 hasAuthorship W2001128566A5004285397 @default.
- W2001128566 hasAuthorship W2001128566A5011407440 @default.
- W2001128566 hasAuthorship W2001128566A5016308856 @default.
- W2001128566 hasAuthorship W2001128566A5029609253 @default.
- W2001128566 hasAuthorship W2001128566A5033567152 @default.
- W2001128566 hasAuthorship W2001128566A5035755227 @default.
- W2001128566 hasAuthorship W2001128566A5038973155 @default.
- W2001128566 hasAuthorship W2001128566A5045987738 @default.
- W2001128566 hasAuthorship W2001128566A5047742848 @default.
- W2001128566 hasAuthorship W2001128566A5048772617 @default.
- W2001128566 hasAuthorship W2001128566A5064391529 @default.
- W2001128566 hasAuthorship W2001128566A5066680776 @default.
- W2001128566 hasAuthorship W2001128566A5072186558 @default.
- W2001128566 hasAuthorship W2001128566A5072396286 @default.
- W2001128566 hasConcept C126322002 @default.
- W2001128566 hasConcept C2780091579 @default.
- W2001128566 hasConcept C2780227381 @default.
- W2001128566 hasConcept C71924100 @default.
- W2001128566 hasConceptScore W2001128566C126322002 @default.
- W2001128566 hasConceptScore W2001128566C2780091579 @default.
- W2001128566 hasConceptScore W2001128566C2780227381 @default.
- W2001128566 hasConceptScore W2001128566C71924100 @default.
- W2001128566 hasIssue "4 Part 1" @default.
- W2001128566 hasLocation W20011285661 @default.
- W2001128566 hasLocation W20011285662 @default.
- W2001128566 hasOpenAccess W2001128566 @default.
- W2001128566 hasPrimaryLocation W20011285661 @default.
- W2001128566 hasRelatedWork W1976968719 @default.
- W2001128566 hasRelatedWork W1983295021 @default.
- W2001128566 hasRelatedWork W2014440066 @default.
- W2001128566 hasRelatedWork W2041660778 @default.
- W2001128566 hasRelatedWork W2052532850 @default.
- W2001128566 hasRelatedWork W2078014016 @default.
- W2001128566 hasRelatedWork W2126142798 @default.
- W2001128566 hasRelatedWork W2359302498 @default.
- W2001128566 hasRelatedWork W2941986899 @default.
- W2001128566 hasRelatedWork W3153376112 @default.
- W2001128566 hasVolume "174" @default.
- W2001128566 isParatext "false" @default.
- W2001128566 isRetracted "false" @default.
- W2001128566 magId "2001128566" @default.
- W2001128566 workType "article" @default.