Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001189477> ?p ?o ?g. }
- W2001189477 endingPage "750" @default.
- W2001189477 startingPage "733" @default.
- W2001189477 abstract "Abstract. We perform a detailed derivation of the bounce-averaged relativistic Fokker-Planck diffusion equation applicable to arbitrary magnetic field at a constant Roederer L. The form of the bounce-averaged diffusion equation is found regardless of details of the mirror geometry, suggesting that the numerical schemes developed for solving the modified two-dimensional (2-D) Fokker-Planck equation in a magnetic dipole should be feasible for similar computation efforts on modeling wave-induced particle diffusion processes in any non-dipolar magnetic field. However, bounce period related terms and bounce-averaged diffusion coefficients are required to be computed in realistic magnetic fields. With the application to the Dungey magnetosphere that is controlled by the intensity of southward interplanetary magnetic field (IMF), we show that with enhanced southward IMF the normalized bounce period related term decreases accordingly, and bounce-averaged diffusion coefficients cover a broader range of electron energy and equatorial pitch angle with a tendency of increased magnitude and peaking at lower energies. The compression of the Dungey magnetosphere can generally produce scattering loss of plasma sheet electrons ~100 keV on a timescale shorter than that in a dipolar field, and induce momentum diffusion at high pitch angles closer to 90°. Correspondingly, the strong diffusion rate drops considerably as a product of changes in both the equatorial loss cone and the bounce period. The extent of differences in all the parameters introduced by the southward IMF intensification also becomes larger for a field line with higher equatorial crossing. With the derived general formulism of bounce-averaged diffusion equation for arbitrary 2-D magnetic field, our results confirm the need for the adoption of realistic magnetic fields to perform accurate determination of electron resonant scattering rates and precise multi-dimensional diffusion simulations of magnetospheric electron dynamics." @default.
- W2001189477 created "2016-06-24" @default.
- W2001189477 creator A5025436380 @default.
- W2001189477 creator A5060986480 @default.
- W2001189477 creator A5076609933 @default.
- W2001189477 date "2012-04-27" @default.
- W2001189477 modified "2023-09-26" @default.
- W2001189477 title "Bounce-averaged Fokker-Planck diffusion equation in non-dipolar magnetic fields with applications to the Dungey magnetosphere" @default.
- W2001189477 cites W1546088369 @default.
- W2001189477 cites W1567962968 @default.
- W2001189477 cites W1569066414 @default.
- W2001189477 cites W1581145848 @default.
- W2001189477 cites W1710728745 @default.
- W2001189477 cites W1714593547 @default.
- W2001189477 cites W1778628052 @default.
- W2001189477 cites W1966338340 @default.
- W2001189477 cites W1966942598 @default.
- W2001189477 cites W1967358611 @default.
- W2001189477 cites W1968413843 @default.
- W2001189477 cites W1968814648 @default.
- W2001189477 cites W1970076157 @default.
- W2001189477 cites W1973648909 @default.
- W2001189477 cites W1973822313 @default.
- W2001189477 cites W1974100605 @default.
- W2001189477 cites W1974332423 @default.
- W2001189477 cites W1974669404 @default.
- W2001189477 cites W1974835220 @default.
- W2001189477 cites W1975424266 @default.
- W2001189477 cites W1976361880 @default.
- W2001189477 cites W1978084358 @default.
- W2001189477 cites W1980017113 @default.
- W2001189477 cites W1982849428 @default.
- W2001189477 cites W1983267408 @default.
- W2001189477 cites W1983832650 @default.
- W2001189477 cites W1985745880 @default.
- W2001189477 cites W1985911551 @default.
- W2001189477 cites W1986218037 @default.
- W2001189477 cites W1986422760 @default.
- W2001189477 cites W1990204571 @default.
- W2001189477 cites W1994235825 @default.
- W2001189477 cites W1996753990 @default.
- W2001189477 cites W1997714539 @default.
- W2001189477 cites W2002423038 @default.
- W2001189477 cites W2004802777 @default.
- W2001189477 cites W2005242707 @default.
- W2001189477 cites W2005485115 @default.
- W2001189477 cites W2008702929 @default.
- W2001189477 cites W2008798386 @default.
- W2001189477 cites W2009060448 @default.
- W2001189477 cites W2012758828 @default.
- W2001189477 cites W2014349253 @default.
- W2001189477 cites W2014980362 @default.
- W2001189477 cites W2015250008 @default.
- W2001189477 cites W2016447952 @default.
- W2001189477 cites W2016752140 @default.
- W2001189477 cites W2017970835 @default.
- W2001189477 cites W2019173865 @default.
- W2001189477 cites W2019545162 @default.
- W2001189477 cites W2021767596 @default.
- W2001189477 cites W2023362792 @default.
- W2001189477 cites W2026655649 @default.
- W2001189477 cites W2026904292 @default.
- W2001189477 cites W2031405023 @default.
- W2001189477 cites W2032235187 @default.
- W2001189477 cites W2032277734 @default.
- W2001189477 cites W2042271521 @default.
- W2001189477 cites W2043513568 @default.
- W2001189477 cites W2043713583 @default.
- W2001189477 cites W2048387210 @default.
- W2001189477 cites W2050344634 @default.
- W2001189477 cites W2052116537 @default.
- W2001189477 cites W2052496625 @default.
- W2001189477 cites W2053758719 @default.
- W2001189477 cites W2053862259 @default.
- W2001189477 cites W2054036816 @default.
- W2001189477 cites W2055932905 @default.
- W2001189477 cites W2057893423 @default.
- W2001189477 cites W2058931980 @default.
- W2001189477 cites W2059323719 @default.
- W2001189477 cites W2060012146 @default.
- W2001189477 cites W2060730046 @default.
- W2001189477 cites W2063709434 @default.
- W2001189477 cites W2064396102 @default.
- W2001189477 cites W2064820142 @default.
- W2001189477 cites W2070133876 @default.
- W2001189477 cites W2070370089 @default.
- W2001189477 cites W2074035094 @default.
- W2001189477 cites W2076718154 @default.
- W2001189477 cites W2079595503 @default.
- W2001189477 cites W2080858827 @default.
- W2001189477 cites W2085674849 @default.
- W2001189477 cites W2085945471 @default.
- W2001189477 cites W2089336743 @default.
- W2001189477 cites W2092904108 @default.
- W2001189477 cites W2094371171 @default.
- W2001189477 cites W2094760446 @default.
- W2001189477 cites W2095265165 @default.
- W2001189477 cites W2102895323 @default.