Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001271493> ?p ?o ?g. }
- W2001271493 endingPage "13464" @default.
- W2001271493 startingPage "13454" @default.
- W2001271493 abstract "Ribonuclease P (RNase P) is an endonuclease that catalyzes the essential removal of the 5′ end of tRNA precursors. Until recently, all identified RNase P enzymes were a ribonucleoprotein with a conserved catalytic RNA component. However, the discovery of protein-only RNase P (PRORP) shifted this paradigm, affording a unique opportunity to compare mechanistic strategies used by naturally evolved protein and RNA-based enzymes that catalyze the same reaction. Here we investigate the enzymatic mechanism of pre-tRNA hydrolysis catalyzed by the NYN (Nedd4-BP1, YacP nuclease) metallonuclease of Arabidopsis thaliana, PRORP1. Multiple and single turnover kinetic data support a mechanism where a step at or before chemistry is rate-limiting and provide a kinetic framework to interpret the results of metal alteration, mutations, and pH dependence. Catalytic activity has a cooperative dependence on the magnesium concentration (nH = 2) under kcat/Km conditions, suggesting that PRORP1 catalysis is optimal with at least two active site metal ions, consistent with the crystal structure. Metal rescue of Asp-to-Ala mutations identified two aspartates important for enhancing metal ion affinity. The single turnover pH dependence of pre-tRNA cleavage revealed a single ionization (pKa ∼ 8.7) important for catalysis, consistent with deprotonation of a metal-bound water nucleophile. The pH and metal dependence mirrors that observed for the RNA-based RNase P, suggesting similar catalytic mechanisms. Thus, despite different macromolecular composition, the RNA and protein-based RNase P act as dynamic scaffolds for the binding and positioning of magnesium ions to catalyze phosphodiester bond hydrolysis.Background: A protein-only ribonuclease P (PRORP) has been recently discovered.Results: PRORP activity has a single ionization (pKa ∼ 8.7) important for catalysis and a cooperative dependence on Mg2+ (nH = 2).Conclusion: PRORP uses catalytic strategies similar to RNA-dependent RNase P.Significance: These results provide evidence for the mechanistic convergence of two different enzymatic macromolecules (RNA and protein) that perform the same biological function. Ribonuclease P (RNase P) is an endonuclease that catalyzes the essential removal of the 5′ end of tRNA precursors. Until recently, all identified RNase P enzymes were a ribonucleoprotein with a conserved catalytic RNA component. However, the discovery of protein-only RNase P (PRORP) shifted this paradigm, affording a unique opportunity to compare mechanistic strategies used by naturally evolved protein and RNA-based enzymes that catalyze the same reaction. Here we investigate the enzymatic mechanism of pre-tRNA hydrolysis catalyzed by the NYN (Nedd4-BP1, YacP nuclease) metallonuclease of Arabidopsis thaliana, PRORP1. Multiple and single turnover kinetic data support a mechanism where a step at or before chemistry is rate-limiting and provide a kinetic framework to interpret the results of metal alteration, mutations, and pH dependence. Catalytic activity has a cooperative dependence on the magnesium concentration (nH = 2) under kcat/Km conditions, suggesting that PRORP1 catalysis is optimal with at least two active site metal ions, consistent with the crystal structure. Metal rescue of Asp-to-Ala mutations identified two aspartates important for enhancing metal ion affinity. The single turnover pH dependence of pre-tRNA cleavage revealed a single ionization (pKa ∼ 8.7) important for catalysis, consistent with deprotonation of a metal-bound water nucleophile. The pH and metal dependence mirrors that observed for the RNA-based RNase P, suggesting similar catalytic mechanisms. Thus, despite different macromolecular composition, the RNA and protein-based RNase P act as dynamic scaffolds for the binding and positioning of magnesium ions to catalyze phosphodiester bond hydrolysis. Background: A protein-only ribonuclease P (PRORP) has been recently discovered. Results: PRORP activity has a single ionization (pKa ∼ 8.7) important for catalysis and a cooperative dependence on Mg2+ (nH = 2). Conclusion: PRORP uses catalytic strategies similar to RNA-dependent RNase P. Significance: These results provide evidence for the mechanistic convergence of two different enzymatic macromolecules (RNA and protein) that perform the same biological function." @default.
- W2001271493 created "2016-06-24" @default.
- W2001271493 creator A5032156009 @default.
- W2001271493 creator A5062407037 @default.
- W2001271493 creator A5081528233 @default.
- W2001271493 date "2015-05-01" @default.
- W2001271493 modified "2023-10-14" @default.
- W2001271493 title "Mechanistic Studies Reveal Similar Catalytic Strategies for Phosphodiester Bond Hydrolysis by Protein-only and RNA-dependent Ribonuclease P" @default.
- W2001271493 cites W1498439983 @default.
- W2001271493 cites W1966145105 @default.
- W2001271493 cites W1986764455 @default.
- W2001271493 cites W1988642942 @default.
- W2001271493 cites W1989011756 @default.
- W2001271493 cites W1990092870 @default.
- W2001271493 cites W1990793025 @default.
- W2001271493 cites W1992709491 @default.
- W2001271493 cites W1995829416 @default.
- W2001271493 cites W1997327174 @default.
- W2001271493 cites W1998262675 @default.
- W2001271493 cites W2005707439 @default.
- W2001271493 cites W2006207911 @default.
- W2001271493 cites W2010437568 @default.
- W2001271493 cites W2011353224 @default.
- W2001271493 cites W2020200597 @default.
- W2001271493 cites W2021207460 @default.
- W2001271493 cites W2028258764 @default.
- W2001271493 cites W2033713984 @default.
- W2001271493 cites W2035133245 @default.
- W2001271493 cites W2041421251 @default.
- W2001271493 cites W2043951259 @default.
- W2001271493 cites W2054228680 @default.
- W2001271493 cites W2063731290 @default.
- W2001271493 cites W2064092755 @default.
- W2001271493 cites W2064154583 @default.
- W2001271493 cites W2065964558 @default.
- W2001271493 cites W2066304271 @default.
- W2001271493 cites W2068018119 @default.
- W2001271493 cites W2073229412 @default.
- W2001271493 cites W2078224461 @default.
- W2001271493 cites W2091084304 @default.
- W2001271493 cites W2092201742 @default.
- W2001271493 cites W2099088591 @default.
- W2001271493 cites W2099450242 @default.
- W2001271493 cites W2105120377 @default.
- W2001271493 cites W2112185861 @default.
- W2001271493 cites W2120967544 @default.
- W2001271493 cites W2128127624 @default.
- W2001271493 cites W2132243349 @default.
- W2001271493 cites W2133173870 @default.
- W2001271493 cites W2140811054 @default.
- W2001271493 cites W2142587778 @default.
- W2001271493 cites W2165502830 @default.
- W2001271493 cites W2169449695 @default.
- W2001271493 cites W2277723691 @default.
- W2001271493 cites W4237070259 @default.
- W2001271493 doi "https://doi.org/10.1074/jbc.m115.644831" @default.
- W2001271493 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4505592" @default.
- W2001271493 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25817998" @default.
- W2001271493 hasPublicationYear "2015" @default.
- W2001271493 type Work @default.
- W2001271493 sameAs 2001271493 @default.
- W2001271493 citedByCount "32" @default.
- W2001271493 countsByYear W20012714932015 @default.
- W2001271493 countsByYear W20012714932016 @default.
- W2001271493 countsByYear W20012714932017 @default.
- W2001271493 countsByYear W20012714932018 @default.
- W2001271493 countsByYear W20012714932019 @default.
- W2001271493 countsByYear W20012714932020 @default.
- W2001271493 countsByYear W20012714932022 @default.
- W2001271493 countsByYear W20012714932023 @default.
- W2001271493 crossrefType "journal-article" @default.
- W2001271493 hasAuthorship W2001271493A5032156009 @default.
- W2001271493 hasAuthorship W2001271493A5062407037 @default.
- W2001271493 hasAuthorship W2001271493A5081528233 @default.
- W2001271493 hasBestOaLocation W20012714931 @default.
- W2001271493 hasConcept C104317684 @default.
- W2001271493 hasConcept C10879258 @default.
- W2001271493 hasConcept C153957851 @default.
- W2001271493 hasConcept C181199279 @default.
- W2001271493 hasConcept C185592680 @default.
- W2001271493 hasConcept C188528350 @default.
- W2001271493 hasConcept C2777271071 @default.
- W2001271493 hasConcept C2778976237 @default.
- W2001271493 hasConcept C38441620 @default.
- W2001271493 hasConcept C55493867 @default.
- W2001271493 hasConcept C67705224 @default.
- W2001271493 hasConcept C69766542 @default.
- W2001271493 hasConcept C71240020 @default.
- W2001271493 hasConceptScore W2001271493C104317684 @default.
- W2001271493 hasConceptScore W2001271493C10879258 @default.
- W2001271493 hasConceptScore W2001271493C153957851 @default.
- W2001271493 hasConceptScore W2001271493C181199279 @default.
- W2001271493 hasConceptScore W2001271493C185592680 @default.
- W2001271493 hasConceptScore W2001271493C188528350 @default.
- W2001271493 hasConceptScore W2001271493C2777271071 @default.
- W2001271493 hasConceptScore W2001271493C2778976237 @default.
- W2001271493 hasConceptScore W2001271493C38441620 @default.
- W2001271493 hasConceptScore W2001271493C55493867 @default.