Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001271659> ?p ?o ?g. }
- W2001271659 endingPage "951" @default.
- W2001271659 startingPage "941" @default.
- W2001271659 abstract "Recently, the <formula formulatype=inline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex Notation=TeX>$hbox{Taylor}^{K}$</tex></formula> Kalman filter was proposed for estimating instantaneous oscillating phasors. Its performance was examined through time-domain simulations using the benchmark test signals specified in the IEEE Standard for Synchrophasors for Power Systems. It was discovered that the estimation error level was abruptly reduced by a factor of ten from the second order, mainly because those filters were able to provide instantaneous phasor estimates. In this paper, the frequency response of the zeroth- and second-order filters is established and illustrated. They demonstrate that, for orders greater than or equal to two, the filters are able to form zero flat phase response about the operation frequency and then able to provide instantaneous estimates. By assessing the behavior of the estimates before signals with harmonics, or noise, not contemplated in the signal model, the frequency response method leads us to design more robust filters, referred to as <formula formulatype=inline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex Notation=TeX>$hbox{Taylor}^{K}$</tex></formula> Kalman–Fourier, because they incorporate the whole set of harmonics in their multiharmonic signal model. It turns out that the bank of comb filters achieved with <formula formulatype=inline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex Notation=TeX>$K = 0$</tex></formula> is equivalent to that of the discrete Fourier transform, with a computational cost of one and a half products per harmonic estimate, which is lower than the FFT cost for more than eight components, and the bank of fence filters obtained with <formula formulatype=inline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink><tex Notation=TeX>$K = 2$</tex></formula> is similar to that of the <formula formulatype=inline xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex Notation=TeX>$hbox{Taylor}^{2}$</tex></formula> Fourier transform but with the advantage of providing estimates devoid of delay and needing only four products per harmonic set of estimates. Due to their instantaneous character, and computational simplicity, those estimates are certainly very useful for real-time harmonic analysis and power system control applications." @default.
- W2001271659 created "2016-06-24" @default.
- W2001271659 creator A5030850833 @default.
- W2001271659 creator A5054485019 @default.
- W2001271659 date "2012-04-01" @default.
- W2001271659 modified "2023-10-06" @default.
- W2001271659 title "Taylor–Kalman–Fourier Filters for Instantaneous Oscillating Phasor and Harmonic Estimates" @default.
- W2001271659 cites W1496119666 @default.
- W2001271659 cites W1997697737 @default.
- W2001271659 cites W2083481029 @default.
- W2001271659 cites W2103507343 @default.
- W2001271659 cites W2126960233 @default.
- W2001271659 cites W2127665203 @default.
- W2001271659 cites W2128433077 @default.
- W2001271659 cites W2133582735 @default.
- W2001271659 cites W2147107167 @default.
- W2001271659 cites W2147716080 @default.
- W2001271659 cites W2148464077 @default.
- W2001271659 cites W2152807154 @default.
- W2001271659 cites W2154450265 @default.
- W2001271659 cites W2156028150 @default.
- W2001271659 cites W2794413559 @default.
- W2001271659 doi "https://doi.org/10.1109/tim.2011.2178677" @default.
- W2001271659 hasPublicationYear "2012" @default.
- W2001271659 type Work @default.
- W2001271659 sameAs 2001271659 @default.
- W2001271659 citedByCount "90" @default.
- W2001271659 countsByYear W20012716592012 @default.
- W2001271659 countsByYear W20012716592013 @default.
- W2001271659 countsByYear W20012716592014 @default.
- W2001271659 countsByYear W20012716592015 @default.
- W2001271659 countsByYear W20012716592016 @default.
- W2001271659 countsByYear W20012716592017 @default.
- W2001271659 countsByYear W20012716592018 @default.
- W2001271659 countsByYear W20012716592019 @default.
- W2001271659 countsByYear W20012716592020 @default.
- W2001271659 countsByYear W20012716592021 @default.
- W2001271659 countsByYear W20012716592022 @default.
- W2001271659 countsByYear W20012716592023 @default.
- W2001271659 crossrefType "journal-article" @default.
- W2001271659 hasAuthorship W2001271659A5030850833 @default.
- W2001271659 hasAuthorship W2001271659A5054485019 @default.
- W2001271659 hasConcept C102519508 @default.
- W2001271659 hasConcept C104267543 @default.
- W2001271659 hasConcept C105795698 @default.
- W2001271659 hasConcept C106131492 @default.
- W2001271659 hasConcept C11413529 @default.
- W2001271659 hasConcept C115961682 @default.
- W2001271659 hasConcept C119599485 @default.
- W2001271659 hasConcept C121332964 @default.
- W2001271659 hasConcept C127413603 @default.
- W2001271659 hasConcept C127934551 @default.
- W2001271659 hasConcept C134306372 @default.
- W2001271659 hasConcept C154945302 @default.
- W2001271659 hasConcept C157286648 @default.
- W2001271659 hasConcept C163258240 @default.
- W2001271659 hasConcept C165801399 @default.
- W2001271659 hasConcept C176046018 @default.
- W2001271659 hasConcept C176605952 @default.
- W2001271659 hasConcept C188414643 @default.
- W2001271659 hasConcept C199360897 @default.
- W2001271659 hasConcept C24326235 @default.
- W2001271659 hasConcept C24890656 @default.
- W2001271659 hasConcept C2775924081 @default.
- W2001271659 hasConcept C2779843651 @default.
- W2001271659 hasConcept C31972630 @default.
- W2001271659 hasConcept C33923547 @default.
- W2001271659 hasConcept C36390408 @default.
- W2001271659 hasConcept C41008148 @default.
- W2001271659 hasConcept C47446073 @default.
- W2001271659 hasConcept C62520636 @default.
- W2001271659 hasConcept C84462506 @default.
- W2001271659 hasConcept C89227174 @default.
- W2001271659 hasConcept C99498987 @default.
- W2001271659 hasConceptScore W2001271659C102519508 @default.
- W2001271659 hasConceptScore W2001271659C104267543 @default.
- W2001271659 hasConceptScore W2001271659C105795698 @default.
- W2001271659 hasConceptScore W2001271659C106131492 @default.
- W2001271659 hasConceptScore W2001271659C11413529 @default.
- W2001271659 hasConceptScore W2001271659C115961682 @default.
- W2001271659 hasConceptScore W2001271659C119599485 @default.
- W2001271659 hasConceptScore W2001271659C121332964 @default.
- W2001271659 hasConceptScore W2001271659C127413603 @default.
- W2001271659 hasConceptScore W2001271659C127934551 @default.
- W2001271659 hasConceptScore W2001271659C134306372 @default.
- W2001271659 hasConceptScore W2001271659C154945302 @default.
- W2001271659 hasConceptScore W2001271659C157286648 @default.
- W2001271659 hasConceptScore W2001271659C163258240 @default.
- W2001271659 hasConceptScore W2001271659C165801399 @default.
- W2001271659 hasConceptScore W2001271659C176046018 @default.
- W2001271659 hasConceptScore W2001271659C176605952 @default.
- W2001271659 hasConceptScore W2001271659C188414643 @default.
- W2001271659 hasConceptScore W2001271659C199360897 @default.
- W2001271659 hasConceptScore W2001271659C24326235 @default.
- W2001271659 hasConceptScore W2001271659C24890656 @default.
- W2001271659 hasConceptScore W2001271659C2775924081 @default.
- W2001271659 hasConceptScore W2001271659C2779843651 @default.
- W2001271659 hasConceptScore W2001271659C31972630 @default.