Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001306428> ?p ?o ?g. }
- W2001306428 endingPage "1140" @default.
- W2001306428 startingPage "1128" @default.
- W2001306428 abstract "The role of a surface modifier is important in the formation of stable nanosuspensions. In this study, a simple and systematic screening method for selecting optimum surface modifiers was performed by utilizing a low-energy wet ball milling method. Nine surface modifiers from different classes with different stabilization mechanisms were applied on six different models of active pharmaceutical ingredients (API). Particle size analysis showed that at concentration five times higher than the critical micelle concentration, SDS and sodium cholate (anionic surfactant) showed the highest percent success to produce stable nanosuspensions with particle size smaller than 250 nm. Similar findings were also shown by poloxamer 188 (nonionic surfactant) and hydroxypropylmethylcellulose E5 (polymeric stabilizer) at concentration 1% (w/v) and 0.8% (w/v), respectively. In addition, combinations of anionic surfactant and nonionic surfactant as well as combinations of anionic surfactant and polymeric stabilizer showed high percent success in the formation of stable nanosuspensions. In general, no correlation can be found between the physicochemical characteristics of the model API (molecular weight, melting point, log P, pKa, and crystallinity) with its feasibility to be nanosized. The concentration and the principle of stabilization of surface modifier determine the formation of stable nanosuspensions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association. The role of a surface modifier is important in the formation of stable nanosuspensions. In this study, a simple and systematic screening method for selecting optimum surface modifiers was performed by utilizing a low-energy wet ball milling method. Nine surface modifiers from different classes with different stabilization mechanisms were applied on six different models of active pharmaceutical ingredients (API). Particle size analysis showed that at concentration five times higher than the critical micelle concentration, SDS and sodium cholate (anionic surfactant) showed the highest percent success to produce stable nanosuspensions with particle size smaller than 250 nm. Similar findings were also shown by poloxamer 188 (nonionic surfactant) and hydroxypropylmethylcellulose E5 (polymeric stabilizer) at concentration 1% (w/v) and 0.8% (w/v), respectively. In addition, combinations of anionic surfactant and nonionic surfactant as well as combinations of anionic surfactant and polymeric stabilizer showed high percent success in the formation of stable nanosuspensions. In general, no correlation can be found between the physicochemical characteristics of the model API (molecular weight, melting point, log P, pKa, and crystallinity) with its feasibility to be nanosized. The concentration and the principle of stabilization of surface modifier determine the formation of stable nanosuspensions. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association." @default.
- W2001306428 created "2016-06-24" @default.
- W2001306428 creator A5023359829 @default.
- W2001306428 creator A5026496799 @default.
- W2001306428 creator A5057119676 @default.
- W2001306428 date "2015-03-01" @default.
- W2001306428 modified "2023-10-09" @default.
- W2001306428 title "Systematic Screening of Different Surface Modifiers for the Production of Physically Stable Nanosuspensions" @default.
- W2001306428 cites W1224204668 @default.
- W2001306428 cites W126259857 @default.
- W2001306428 cites W1519509748 @default.
- W2001306428 cites W1966982589 @default.
- W2001306428 cites W1986446800 @default.
- W2001306428 cites W1991916654 @default.
- W2001306428 cites W2000189967 @default.
- W2001306428 cites W2001596955 @default.
- W2001306428 cites W2003093213 @default.
- W2001306428 cites W2011932025 @default.
- W2001306428 cites W2018746259 @default.
- W2001306428 cites W2031158522 @default.
- W2001306428 cites W2033431239 @default.
- W2001306428 cites W2033915493 @default.
- W2001306428 cites W2034202921 @default.
- W2001306428 cites W20353368 @default.
- W2001306428 cites W2035651537 @default.
- W2001306428 cites W2043006379 @default.
- W2001306428 cites W2056211275 @default.
- W2001306428 cites W2057996810 @default.
- W2001306428 cites W2064802984 @default.
- W2001306428 cites W2065009582 @default.
- W2001306428 cites W2065201436 @default.
- W2001306428 cites W2079159049 @default.
- W2001306428 cites W2092521681 @default.
- W2001306428 cites W2093498127 @default.
- W2001306428 cites W2115813632 @default.
- W2001306428 cites W2127377425 @default.
- W2001306428 cites W2130835270 @default.
- W2001306428 cites W2131560937 @default.
- W2001306428 cites W2132081026 @default.
- W2001306428 cites W2149808465 @default.
- W2001306428 cites W4239414673 @default.
- W2001306428 doi "https://doi.org/10.1002/jps.24266" @default.
- W2001306428 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28756835" @default.
- W2001306428 hasPublicationYear "2015" @default.
- W2001306428 type Work @default.
- W2001306428 sameAs 2001306428 @default.
- W2001306428 citedByCount "59" @default.
- W2001306428 countsByYear W20013064282016 @default.
- W2001306428 countsByYear W20013064282017 @default.
- W2001306428 countsByYear W20013064282018 @default.
- W2001306428 countsByYear W20013064282019 @default.
- W2001306428 countsByYear W20013064282020 @default.
- W2001306428 countsByYear W20013064282021 @default.
- W2001306428 countsByYear W20013064282022 @default.
- W2001306428 countsByYear W20013064282023 @default.
- W2001306428 crossrefType "journal-article" @default.
- W2001306428 hasAuthorship W2001306428A5023359829 @default.
- W2001306428 hasAuthorship W2001306428A5026496799 @default.
- W2001306428 hasAuthorship W2001306428A5057119676 @default.
- W2001306428 hasConcept C101335993 @default.
- W2001306428 hasConcept C11268172 @default.
- W2001306428 hasConcept C115537861 @default.
- W2001306428 hasConcept C127413603 @default.
- W2001306428 hasConcept C132186339 @default.
- W2001306428 hasConcept C13530604 @default.
- W2001306428 hasConcept C15920480 @default.
- W2001306428 hasConcept C159985019 @default.
- W2001306428 hasConcept C178790620 @default.
- W2001306428 hasConcept C184651966 @default.
- W2001306428 hasConcept C185592680 @default.
- W2001306428 hasConcept C187530423 @default.
- W2001306428 hasConcept C192562407 @default.
- W2001306428 hasConcept C195839 @default.
- W2001306428 hasConcept C42360764 @default.
- W2001306428 hasConcept C43617362 @default.
- W2001306428 hasConcept C46275449 @default.
- W2001306428 hasConcept C521977710 @default.
- W2001306428 hasConcept C58226133 @default.
- W2001306428 hasConceptScore W2001306428C101335993 @default.
- W2001306428 hasConceptScore W2001306428C11268172 @default.
- W2001306428 hasConceptScore W2001306428C115537861 @default.
- W2001306428 hasConceptScore W2001306428C127413603 @default.
- W2001306428 hasConceptScore W2001306428C132186339 @default.
- W2001306428 hasConceptScore W2001306428C13530604 @default.
- W2001306428 hasConceptScore W2001306428C15920480 @default.
- W2001306428 hasConceptScore W2001306428C159985019 @default.
- W2001306428 hasConceptScore W2001306428C178790620 @default.
- W2001306428 hasConceptScore W2001306428C184651966 @default.
- W2001306428 hasConceptScore W2001306428C185592680 @default.
- W2001306428 hasConceptScore W2001306428C187530423 @default.
- W2001306428 hasConceptScore W2001306428C192562407 @default.
- W2001306428 hasConceptScore W2001306428C195839 @default.
- W2001306428 hasConceptScore W2001306428C42360764 @default.
- W2001306428 hasConceptScore W2001306428C43617362 @default.
- W2001306428 hasConceptScore W2001306428C46275449 @default.
- W2001306428 hasConceptScore W2001306428C521977710 @default.
- W2001306428 hasConceptScore W2001306428C58226133 @default.
- W2001306428 hasIssue "3" @default.