Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001421671> ?p ?o ?g. }
- W2001421671 endingPage "992" @default.
- W2001421671 startingPage "961" @default.
- W2001421671 abstract "When different spatial databases are combined, an important issue is the identification of inconsistencies between data. Quite often, representations of the same geographical entities in databases are different and reflect different points of view. In order to fully take advantage of these differences when object instances are associated, a key issue is to determine whether the differences are normal, i.e. explained by the database specifications, or if they are due to erroneous or outdated data in one database. In this paper, we propose a knowledge‐based approach to partially automate the consistency assessment between multiple representations of data. The inconsistency detection is viewed as a knowledge‐acquisition problem, the source of knowledge being the data. The consistency assessment is carried out by applying a proposed method called MECO. This method is itself parameterized by some domain knowledge obtained from a second method called MACO. MACO supports two approaches (direct or indirect) to perform the knowledge acquisition using data‐mining techniques. In particular, a supervised learning approach is defined to automate the knowledge acquisition so as to drastically reduce the human‐domain expert's work. Thanks to this approach, the knowledge‐acquisition process is sped up and less expert‐dependent. Training examples are obtained automatically upon completion of the spatial data matching. Knowledge extraction from data following this bottom‐up approach is particularly useful, since the database specifications are generally complex, difficult to analyse, and manually encoded. Such a data‐driven process also sheds some light on the gap between textual specifications and those actually used to produce the data. The methodology is illustrated and experimentally validated by comparing geometrical representations and attribute values of different vector spatial databases. The advantages and limits of such partially automatic approaches are discussed, and some future works are suggested." @default.
- W2001421671 created "2016-06-24" @default.
- W2001421671 creator A5002050260 @default.
- W2001421671 creator A5028389908 @default.
- W2001421671 creator A5088630634 @default.
- W2001421671 date "2009-08-01" @default.
- W2001421671 modified "2023-09-30" @default.
- W2001421671 title "A data‐mining approach for assessing consistency between multiple representations in spatial databases" @default.
- W2001421671 cites W134160450 @default.
- W2001421671 cites W1482773206 @default.
- W2001421671 cites W1519605795 @default.
- W2001421671 cites W1524973761 @default.
- W2001421671 cites W1544656655 @default.
- W2001421671 cites W1558551749 @default.
- W2001421671 cites W1561949898 @default.
- W2001421671 cites W1574719525 @default.
- W2001421671 cites W1707740219 @default.
- W2001421671 cites W1964695545 @default.
- W2001421671 cites W1990677092 @default.
- W2001421671 cites W2000064598 @default.
- W2001421671 cites W2014257213 @default.
- W2001421671 cites W2016028408 @default.
- W2001421671 cites W2016758618 @default.
- W2001421671 cites W2023608761 @default.
- W2001421671 cites W2024370823 @default.
- W2001421671 cites W2042688391 @default.
- W2001421671 cites W2045034287 @default.
- W2001421671 cites W2053185789 @default.
- W2001421671 cites W2056135805 @default.
- W2001421671 cites W2066151696 @default.
- W2001421671 cites W2073616258 @default.
- W2001421671 cites W2078770972 @default.
- W2001421671 cites W2084180754 @default.
- W2001421671 cites W2089634871 @default.
- W2001421671 cites W2090270318 @default.
- W2001421671 cites W2098242580 @default.
- W2001421671 cites W2137010787 @default.
- W2001421671 cites W2141824507 @default.
- W2001421671 cites W2168092187 @default.
- W2001421671 cites W2320229189 @default.
- W2001421671 cites W39725046 @default.
- W2001421671 cites W4243116757 @default.
- W2001421671 cites W4247542684 @default.
- W2001421671 cites W74302437 @default.
- W2001421671 doi "https://doi.org/10.1080/13658810701791949" @default.
- W2001421671 hasPublicationYear "2009" @default.
- W2001421671 type Work @default.
- W2001421671 sameAs 2001421671 @default.
- W2001421671 citedByCount "22" @default.
- W2001421671 countsByYear W20014216712013 @default.
- W2001421671 countsByYear W20014216712014 @default.
- W2001421671 countsByYear W20014216712015 @default.
- W2001421671 countsByYear W20014216712016 @default.
- W2001421671 countsByYear W20014216712017 @default.
- W2001421671 countsByYear W20014216712018 @default.
- W2001421671 countsByYear W20014216712019 @default.
- W2001421671 countsByYear W20014216712021 @default.
- W2001421671 countsByYear W20014216712023 @default.
- W2001421671 crossrefType "journal-article" @default.
- W2001421671 hasAuthorship W2001421671A5002050260 @default.
- W2001421671 hasAuthorship W2001421671A5028389908 @default.
- W2001421671 hasAuthorship W2001421671A5088630634 @default.
- W2001421671 hasBestOaLocation W20014216712 @default.
- W2001421671 hasConcept C105795698 @default.
- W2001421671 hasConcept C111919701 @default.
- W2001421671 hasConcept C116834253 @default.
- W2001421671 hasConcept C120567893 @default.
- W2001421671 hasConcept C124101348 @default.
- W2001421671 hasConcept C134306372 @default.
- W2001421671 hasConcept C154945302 @default.
- W2001421671 hasConcept C162324750 @default.
- W2001421671 hasConcept C165064840 @default.
- W2001421671 hasConcept C176217482 @default.
- W2001421671 hasConcept C207685749 @default.
- W2001421671 hasConcept C21547014 @default.
- W2001421671 hasConcept C23123220 @default.
- W2001421671 hasConcept C24756922 @default.
- W2001421671 hasConcept C26517878 @default.
- W2001421671 hasConcept C2776436953 @default.
- W2001421671 hasConcept C2777220311 @default.
- W2001421671 hasConcept C2781238097 @default.
- W2001421671 hasConcept C33923547 @default.
- W2001421671 hasConcept C36503486 @default.
- W2001421671 hasConcept C38652104 @default.
- W2001421671 hasConcept C41008148 @default.
- W2001421671 hasConcept C42199009 @default.
- W2001421671 hasConcept C59822182 @default.
- W2001421671 hasConcept C77088390 @default.
- W2001421671 hasConcept C86803240 @default.
- W2001421671 hasConcept C98045186 @default.
- W2001421671 hasConceptScore W2001421671C105795698 @default.
- W2001421671 hasConceptScore W2001421671C111919701 @default.
- W2001421671 hasConceptScore W2001421671C116834253 @default.
- W2001421671 hasConceptScore W2001421671C120567893 @default.
- W2001421671 hasConceptScore W2001421671C124101348 @default.
- W2001421671 hasConceptScore W2001421671C134306372 @default.
- W2001421671 hasConceptScore W2001421671C154945302 @default.
- W2001421671 hasConceptScore W2001421671C162324750 @default.