Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001574227> ?p ?o ?g. }
- W2001574227 endingPage "1268" @default.
- W2001574227 startingPage "1258" @default.
- W2001574227 abstract "It is now widely accepted that firms should direct more effort into retaining existing customers than to attracting new ones. To achieve this, customers likely to defect need to be identified so that they can be approached with tailored incentives or other bespoke retention offers. Such strategies call for predictive models capable of identifying customers with higher probabilities of defecting in the relatively near future. A review of the extant literature on customer churn models reveals that although several predictive models have been developed to model churn in B2C contexts, the B2B context in general, and non-contractual settings in particular, have received less attention in this regard. Therefore, to address these gaps, this study proposes a data-mining approach to model non-contractual customer churn in B2B contexts. Several modeling techniques are compared in terms of their ability to predict true churners. The best performing data-mining technique (boosting) is then applied to develop a profit maximizing retention campaign. Results confirm that the model driven approach to churn prediction and developing retention strategies outperforms commonly used managerial heuristics." @default.
- W2001574227 created "2016-06-24" @default.
- W2001574227 creator A5052901266 @default.
- W2001574227 creator A5076666218 @default.
- W2001574227 creator A5090300304 @default.
- W2001574227 date "2014-10-01" @default.
- W2001574227 modified "2023-09-26" @default.
- W2001574227 title "Managing B2B customer churn, retention and profitability" @default.
- W2001574227 cites W1485431829 @default.
- W2001574227 cites W1598938328 @default.
- W2001574227 cites W1931284523 @default.
- W2001574227 cites W1965342764 @default.
- W2001574227 cites W1965895350 @default.
- W2001574227 cites W1966021193 @default.
- W2001574227 cites W1969766319 @default.
- W2001574227 cites W1975846642 @default.
- W2001574227 cites W1980126189 @default.
- W2001574227 cites W1985295054 @default.
- W2001574227 cites W1985339451 @default.
- W2001574227 cites W1985876643 @default.
- W2001574227 cites W1989049108 @default.
- W2001574227 cites W1990788070 @default.
- W2001574227 cites W1990844260 @default.
- W2001574227 cites W2002075784 @default.
- W2001574227 cites W2002843259 @default.
- W2001574227 cites W2003083941 @default.
- W2001574227 cites W2005755239 @default.
- W2001574227 cites W2006153161 @default.
- W2001574227 cites W2008087547 @default.
- W2001574227 cites W2013594607 @default.
- W2001574227 cites W2017027240 @default.
- W2001574227 cites W2024046085 @default.
- W2001574227 cites W2026219386 @default.
- W2001574227 cites W2028126270 @default.
- W2001574227 cites W2032030350 @default.
- W2001574227 cites W2034934301 @default.
- W2001574227 cites W2041360843 @default.
- W2001574227 cites W2048755952 @default.
- W2001574227 cites W2054128974 @default.
- W2001574227 cites W2055570665 @default.
- W2001574227 cites W2061670499 @default.
- W2001574227 cites W2061798849 @default.
- W2001574227 cites W2066060244 @default.
- W2001574227 cites W2066434428 @default.
- W2001574227 cites W2067594023 @default.
- W2001574227 cites W2069300565 @default.
- W2001574227 cites W2071496623 @default.
- W2001574227 cites W2075211514 @default.
- W2001574227 cites W2076261257 @default.
- W2001574227 cites W2078396161 @default.
- W2001574227 cites W2078704831 @default.
- W2001574227 cites W2081547566 @default.
- W2001574227 cites W2084484787 @default.
- W2001574227 cites W2085196929 @default.
- W2001574227 cites W2090166199 @default.
- W2001574227 cites W2093206339 @default.
- W2001574227 cites W2100805904 @default.
- W2001574227 cites W2106637586 @default.
- W2001574227 cites W2110673691 @default.
- W2001574227 cites W2128011508 @default.
- W2001574227 cites W2136806966 @default.
- W2001574227 cites W2146289756 @default.
- W2001574227 cites W2151527246 @default.
- W2001574227 cites W2152518947 @default.
- W2001574227 cites W2155653793 @default.
- W2001574227 cites W2156957852 @default.
- W2001574227 cites W2158698691 @default.
- W2001574227 cites W2159105921 @default.
- W2001574227 cites W2161634631 @default.
- W2001574227 cites W2183387232 @default.
- W2001574227 cites W2265246024 @default.
- W2001574227 cites W3123614577 @default.
- W2001574227 cites W3124027359 @default.
- W2001574227 cites W4212883601 @default.
- W2001574227 cites W4230778517 @default.
- W2001574227 cites W4249830321 @default.
- W2001574227 cites W4254158692 @default.
- W2001574227 doi "https://doi.org/10.1016/j.indmarman.2014.06.016" @default.
- W2001574227 hasPublicationYear "2014" @default.
- W2001574227 type Work @default.
- W2001574227 sameAs 2001574227 @default.
- W2001574227 citedByCount "78" @default.
- W2001574227 countsByYear W20015742272015 @default.
- W2001574227 countsByYear W20015742272016 @default.
- W2001574227 countsByYear W20015742272017 @default.
- W2001574227 countsByYear W20015742272018 @default.
- W2001574227 countsByYear W20015742272019 @default.
- W2001574227 countsByYear W20015742272020 @default.
- W2001574227 countsByYear W20015742272021 @default.
- W2001574227 countsByYear W20015742272022 @default.
- W2001574227 countsByYear W20015742272023 @default.
- W2001574227 crossrefType "journal-article" @default.
- W2001574227 hasAuthorship W2001574227A5052901266 @default.
- W2001574227 hasAuthorship W2001574227A5076666218 @default.
- W2001574227 hasAuthorship W2001574227A5090300304 @default.
- W2001574227 hasConcept C101276457 @default.
- W2001574227 hasConcept C10138342 @default.
- W2001574227 hasConcept C111919701 @default.