Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001671710> ?p ?o ?g. }
- W2001671710 endingPage "39" @default.
- W2001671710 startingPage "17" @default.
- W2001671710 abstract "In this study, kernel interval-valued Fuzzy C-Means clustering (KIFCM) and multiple kernel interval-valued Fuzzy C-Means clustering (MKIFCM) are proposed. The KIFCM algorithm is built on a basis of the kernel learning method and the interval-valued fuzzy sets with intent to overcome some drawbacks existing in the “conventional” Fuzzy C-Means (FCM) algorithm. The development of the method is motivated by two factors. First, uncertainty is inherent in clustering problems due to some information deficiency, which might be incomplete, imprecise, fragmentary, not fully reliable, vague, contradictory, etc. With this regard, interval-valued fuzzy sets exhibit advantages when handling such aspects of uncertainty. Second, kernel methods form a new class of pattern analysis algorithms which can cope with general types of data and detect general types of relations (geometric properties) by embedding input data in a vector space based on the inner products and looking for linear relations in the space. However, as the clustering problems may involve various input features exhibiting different impacts on the obtained results, we introduce a new MKIFCM algorithm, which uses a combination of different kernels (giving rise to a concept of a composite kernel). The composite kernel was built by mapping each input feature onto individual kernel space and linearly combining these kernels with the optimized weights of the corresponding kernel. The experiments were completed for several well-known datasets, land cover classification from multi-spectral satellite image and Multiplex Fluorescent In Situ Hybridization (MFISH) classification problem. The obtained results demonstrate the advantages of the proposed algorithms." @default.
- W2001671710 created "2016-06-24" @default.
- W2001671710 creator A5003799782 @default.
- W2001671710 creator A5006593529 @default.
- W2001671710 creator A5006784121 @default.
- W2001671710 date "2015-11-01" @default.
- W2001671710 modified "2023-10-16" @default.
- W2001671710 title "Towards hybrid clustering approach to data classification: Multiple kernels based interval-valued Fuzzy C-Means algorithms" @default.
- W2001671710 cites W185001486 @default.
- W2001671710 cites W1973880112 @default.
- W2001671710 cites W1978527081 @default.
- W2001671710 cites W1985702987 @default.
- W2001671710 cites W1990368529 @default.
- W2001671710 cites W2012399117 @default.
- W2001671710 cites W2037479635 @default.
- W2001671710 cites W2051854724 @default.
- W2001671710 cites W2051856481 @default.
- W2001671710 cites W2058915639 @default.
- W2001671710 cites W2071300659 @default.
- W2001671710 cites W2081549451 @default.
- W2001671710 cites W2088859281 @default.
- W2001671710 cites W2093064982 @default.
- W2001671710 cites W2100399071 @default.
- W2001671710 cites W2103535990 @default.
- W2001671710 cites W2115077250 @default.
- W2001671710 cites W2125687218 @default.
- W2001671710 cites W2126046058 @default.
- W2001671710 cites W2126739537 @default.
- W2001671710 cites W2133059825 @default.
- W2001671710 cites W2151398376 @default.
- W2001671710 cites W2155074104 @default.
- W2001671710 cites W2161160262 @default.
- W2001671710 cites W2161444669 @default.
- W2001671710 cites W2165325570 @default.
- W2001671710 cites W2171855237 @default.
- W2001671710 cites W40013532 @default.
- W2001671710 cites W4245152641 @default.
- W2001671710 doi "https://doi.org/10.1016/j.fss.2015.01.020" @default.
- W2001671710 hasPublicationYear "2015" @default.
- W2001671710 type Work @default.
- W2001671710 sameAs 2001671710 @default.
- W2001671710 citedByCount "38" @default.
- W2001671710 countsByYear W20016717102015 @default.
- W2001671710 countsByYear W20016717102016 @default.
- W2001671710 countsByYear W20016717102017 @default.
- W2001671710 countsByYear W20016717102018 @default.
- W2001671710 countsByYear W20016717102019 @default.
- W2001671710 countsByYear W20016717102020 @default.
- W2001671710 countsByYear W20016717102021 @default.
- W2001671710 countsByYear W20016717102022 @default.
- W2001671710 crossrefType "journal-article" @default.
- W2001671710 hasAuthorship W2001671710A5003799782 @default.
- W2001671710 hasAuthorship W2001671710A5006593529 @default.
- W2001671710 hasAuthorship W2001671710A5006784121 @default.
- W2001671710 hasConcept C105795698 @default.
- W2001671710 hasConcept C11413529 @default.
- W2001671710 hasConcept C118615104 @default.
- W2001671710 hasConcept C122280245 @default.
- W2001671710 hasConcept C12267149 @default.
- W2001671710 hasConcept C124101348 @default.
- W2001671710 hasConcept C140417398 @default.
- W2001671710 hasConcept C153180895 @default.
- W2001671710 hasConcept C154945302 @default.
- W2001671710 hasConcept C17212007 @default.
- W2001671710 hasConcept C33923547 @default.
- W2001671710 hasConcept C41008148 @default.
- W2001671710 hasConcept C55851704 @default.
- W2001671710 hasConcept C58166 @default.
- W2001671710 hasConcept C73555534 @default.
- W2001671710 hasConcept C74193536 @default.
- W2001671710 hasConcept C75866337 @default.
- W2001671710 hasConcept C83665646 @default.
- W2001671710 hasConceptScore W2001671710C105795698 @default.
- W2001671710 hasConceptScore W2001671710C11413529 @default.
- W2001671710 hasConceptScore W2001671710C118615104 @default.
- W2001671710 hasConceptScore W2001671710C122280245 @default.
- W2001671710 hasConceptScore W2001671710C12267149 @default.
- W2001671710 hasConceptScore W2001671710C124101348 @default.
- W2001671710 hasConceptScore W2001671710C140417398 @default.
- W2001671710 hasConceptScore W2001671710C153180895 @default.
- W2001671710 hasConceptScore W2001671710C154945302 @default.
- W2001671710 hasConceptScore W2001671710C17212007 @default.
- W2001671710 hasConceptScore W2001671710C33923547 @default.
- W2001671710 hasConceptScore W2001671710C41008148 @default.
- W2001671710 hasConceptScore W2001671710C55851704 @default.
- W2001671710 hasConceptScore W2001671710C58166 @default.
- W2001671710 hasConceptScore W2001671710C73555534 @default.
- W2001671710 hasConceptScore W2001671710C74193536 @default.
- W2001671710 hasConceptScore W2001671710C75866337 @default.
- W2001671710 hasConceptScore W2001671710C83665646 @default.
- W2001671710 hasLocation W20016717101 @default.
- W2001671710 hasOpenAccess W2001671710 @default.
- W2001671710 hasPrimaryLocation W20016717101 @default.
- W2001671710 hasRelatedWork W1535136526 @default.
- W2001671710 hasRelatedWork W1590832708 @default.
- W2001671710 hasRelatedWork W1836142315 @default.
- W2001671710 hasRelatedWork W1983263273 @default.
- W2001671710 hasRelatedWork W1984421104 @default.