Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001736287> ?p ?o ?g. }
- W2001736287 endingPage "1142" @default.
- W2001736287 startingPage "1121" @default.
- W2001736287 abstract "Hyperspectral imaging systems are starting to be used as a scientific tool for food quality assessment. A typical hyperspectral image is composed of a set of a relatively wide range of monochromatic images corresponding to continuous wavelengths that normally contain redundant information or may exhibit a high degree of correlation. In addition, computation of the classifiers used to deal with the data obtained from the images can become excessively complex and time-consuming for such high-dimensional datasets, and this makes it difficult to incorporate such systems into an industry that demands standard protocols or high-speed processes. Therefore, recent works have focused on the development of new systems based on this technology that are capable of analysing quality features that cannot be inspected using visible imaging. Many of those studies have also centred on finding new statistical techniques to reduce the hyperspectral images to multispectral ones, which are easier to implement in automatic, non-destructive systems. This article reviews recent works that use hyperspectral imaging for the inspection of fruit and vegetables. It explains the different technologies available to acquire the images and their use for the non-destructive inspection of the internal and external features of these products. Particular attention is paid to the works aimed at reducing the dimensionality of the images, with details of the statistical techniques most commonly used for this task." @default.
- W2001736287 created "2016-06-24" @default.
- W2001736287 creator A5009177738 @default.
- W2001736287 creator A5021033540 @default.
- W2001736287 creator A5035531547 @default.
- W2001736287 creator A5042020318 @default.
- W2001736287 creator A5064765261 @default.
- W2001736287 creator A5085032541 @default.
- W2001736287 date "2011-11-22" @default.
- W2001736287 modified "2023-10-11" @default.
- W2001736287 title "Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment" @default.
- W2001736287 cites W1538234702 @default.
- W2001736287 cites W1742512077 @default.
- W2001736287 cites W1966483366 @default.
- W2001736287 cites W1966649791 @default.
- W2001736287 cites W1969945695 @default.
- W2001736287 cites W1973128549 @default.
- W2001736287 cites W1977435085 @default.
- W2001736287 cites W1980942782 @default.
- W2001736287 cites W1981312050 @default.
- W2001736287 cites W1982397398 @default.
- W2001736287 cites W1983938155 @default.
- W2001736287 cites W1987339454 @default.
- W2001736287 cites W1988740103 @default.
- W2001736287 cites W1991797370 @default.
- W2001736287 cites W1992111150 @default.
- W2001736287 cites W1995181482 @default.
- W2001736287 cites W1997014250 @default.
- W2001736287 cites W1999238555 @default.
- W2001736287 cites W2000039334 @default.
- W2001736287 cites W2001619934 @default.
- W2001736287 cites W2001793398 @default.
- W2001736287 cites W2004125248 @default.
- W2001736287 cites W2005011933 @default.
- W2001736287 cites W2007787337 @default.
- W2001736287 cites W2008158164 @default.
- W2001736287 cites W2008461530 @default.
- W2001736287 cites W2009074976 @default.
- W2001736287 cites W2010360199 @default.
- W2001736287 cites W2013901782 @default.
- W2001736287 cites W2015096204 @default.
- W2001736287 cites W2017125212 @default.
- W2001736287 cites W2017418162 @default.
- W2001736287 cites W2020225092 @default.
- W2001736287 cites W2022509794 @default.
- W2001736287 cites W2022651636 @default.
- W2001736287 cites W2022662418 @default.
- W2001736287 cites W2026622163 @default.
- W2001736287 cites W2026978702 @default.
- W2001736287 cites W2028581288 @default.
- W2001736287 cites W2030474245 @default.
- W2001736287 cites W2035137795 @default.
- W2001736287 cites W2035635272 @default.
- W2001736287 cites W2037130097 @default.
- W2001736287 cites W2038875453 @default.
- W2001736287 cites W2039897671 @default.
- W2001736287 cites W2041129691 @default.
- W2001736287 cites W2042795904 @default.
- W2001736287 cites W2043022957 @default.
- W2001736287 cites W2043161172 @default.
- W2001736287 cites W2044828542 @default.
- W2001736287 cites W2045283192 @default.
- W2001736287 cites W2048976066 @default.
- W2001736287 cites W2050797020 @default.
- W2001736287 cites W2051817703 @default.
- W2001736287 cites W2053355141 @default.
- W2001736287 cites W2053767967 @default.
- W2001736287 cites W2055036777 @default.
- W2001736287 cites W2055702453 @default.
- W2001736287 cites W2061724928 @default.
- W2001736287 cites W2061855980 @default.
- W2001736287 cites W2064677916 @default.
- W2001736287 cites W206508622 @default.
- W2001736287 cites W2066257476 @default.
- W2001736287 cites W2068324025 @default.
- W2001736287 cites W2072233582 @default.
- W2001736287 cites W2076592461 @default.
- W2001736287 cites W2077903554 @default.
- W2001736287 cites W2078351586 @default.
- W2001736287 cites W2078470144 @default.
- W2001736287 cites W2079513184 @default.
- W2001736287 cites W2081418685 @default.
- W2001736287 cites W2082088043 @default.
- W2001736287 cites W2082697267 @default.
- W2001736287 cites W2084916338 @default.
- W2001736287 cites W2090088893 @default.
- W2001736287 cites W2093496208 @default.
- W2001736287 cites W2095404125 @default.
- W2001736287 cites W2103581881 @default.
- W2001736287 cites W2123180929 @default.
- W2001736287 cites W2127371720 @default.
- W2001736287 cites W2131697388 @default.
- W2001736287 cites W2133589370 @default.
- W2001736287 cites W2134244062 @default.
- W2001736287 cites W2134262590 @default.
- W2001736287 cites W2141404135 @default.
- W2001736287 cites W2148060539 @default.
- W2001736287 cites W2148525014 @default.