Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001747071> ?p ?o ?g. }
- W2001747071 endingPage "301" @default.
- W2001747071 startingPage "282" @default.
- W2001747071 abstract "Feature selection techniques have been successfully applied in many applications for making supervised learning more effective and efficient. These techniques have been widely used and studied in traditional supervised learning settings, where each instance is expected to have a label. In multiple instance learning (MIL) each example or bag consists of a variable set of instances, and the label is known for the bag as a whole, but not for the individual instances it consists of. Therefore utilizing these labels for feature selection in MIL becomes less straightforward. In this paper we study a new feature subset selection method for MIL called HyDR-MI (hybrid dimensionality reduction method for multiple instance learning). The hybrid consists of the filter component based on an extension of the ReliefF algorithm developed for working with MIL and the wrapper component based on a genetic algorithm that optimizes the search for the best feature subset from a reduced set of features, output by the filter component. We conducted an extensive experimental evaluation of our method on five benchmark datasets and 17 classification algorithms for MIL. The results of our study show the potential of the proposed hybrid with respect to the desirable effect it produces: a significant improvement of the predictive performance of many MIL classification techniques as compared to the effect of filter-based feature selection. This is achieved due to the possibility to decide how many of the top ranked features are useful for each particular algorithm and the possibility to discard redundant attributes." @default.
- W2001747071 created "2016-06-24" @default.
- W2001747071 creator A5002562252 @default.
- W2001747071 creator A5022601535 @default.
- W2001747071 creator A5036473274 @default.
- W2001747071 date "2013-02-01" @default.
- W2001747071 modified "2023-09-26" @default.
- W2001747071 title "HyDR-MI: A hybrid algorithm to reduce dimensionality in multiple instance learning" @default.
- W2001747071 cites W1534519302 @default.
- W2001747071 cites W1544144649 @default.
- W2001747071 cites W1560331282 @default.
- W2001747071 cites W1979062617 @default.
- W2001747071 cites W1990159468 @default.
- W2001747071 cites W1992018127 @default.
- W2001747071 cites W2017291556 @default.
- W2001747071 cites W2020934501 @default.
- W2001747071 cites W2031384358 @default.
- W2001747071 cites W2034445978 @default.
- W2001747071 cites W2054103873 @default.
- W2001747071 cites W2061458158 @default.
- W2001747071 cites W2061554433 @default.
- W2001747071 cites W2074992691 @default.
- W2001747071 cites W2093799708 @default.
- W2001747071 cites W2098166271 @default.
- W2001747071 cites W2098239572 @default.
- W2001747071 cites W2100253618 @default.
- W2001747071 cites W2110119381 @default.
- W2001747071 cites W2110303579 @default.
- W2001747071 cites W2125365101 @default.
- W2001747071 cites W2125903555 @default.
- W2001747071 cites W2127983967 @default.
- W2001747071 cites W2132243182 @default.
- W2001747071 cites W2132786922 @default.
- W2001747071 cites W2133174918 @default.
- W2001747071 cites W2135190479 @default.
- W2001747071 cites W2135986560 @default.
- W2001747071 cites W2137372019 @default.
- W2001747071 cites W2143539877 @default.
- W2001747071 cites W2149648623 @default.
- W2001747071 cites W2151040995 @default.
- W2001747071 cites W2165466912 @default.
- W2001747071 cites W2165885026 @default.
- W2001747071 cites W2169171650 @default.
- W2001747071 cites W2172207578 @default.
- W2001747071 doi "https://doi.org/10.1016/j.ins.2011.01.034" @default.
- W2001747071 hasPublicationYear "2013" @default.
- W2001747071 type Work @default.
- W2001747071 sameAs 2001747071 @default.
- W2001747071 citedByCount "21" @default.
- W2001747071 countsByYear W20017470712013 @default.
- W2001747071 countsByYear W20017470712014 @default.
- W2001747071 countsByYear W20017470712015 @default.
- W2001747071 countsByYear W20017470712016 @default.
- W2001747071 countsByYear W20017470712017 @default.
- W2001747071 countsByYear W20017470712018 @default.
- W2001747071 countsByYear W20017470712021 @default.
- W2001747071 countsByYear W20017470712023 @default.
- W2001747071 crossrefType "journal-article" @default.
- W2001747071 hasAuthorship W2001747071A5002562252 @default.
- W2001747071 hasAuthorship W2001747071A5022601535 @default.
- W2001747071 hasAuthorship W2001747071A5036473274 @default.
- W2001747071 hasConcept C106131492 @default.
- W2001747071 hasConcept C111030470 @default.
- W2001747071 hasConcept C11413529 @default.
- W2001747071 hasConcept C119857082 @default.
- W2001747071 hasConcept C121332964 @default.
- W2001747071 hasConcept C124101348 @default.
- W2001747071 hasConcept C13280743 @default.
- W2001747071 hasConcept C138885662 @default.
- W2001747071 hasConcept C148483581 @default.
- W2001747071 hasConcept C153180895 @default.
- W2001747071 hasConcept C154945302 @default.
- W2001747071 hasConcept C168167062 @default.
- W2001747071 hasConcept C177264268 @default.
- W2001747071 hasConcept C185798385 @default.
- W2001747071 hasConcept C199360897 @default.
- W2001747071 hasConcept C205649164 @default.
- W2001747071 hasConcept C2776401178 @default.
- W2001747071 hasConcept C31972630 @default.
- W2001747071 hasConcept C41008148 @default.
- W2001747071 hasConcept C41895202 @default.
- W2001747071 hasConcept C70518039 @default.
- W2001747071 hasConcept C81917197 @default.
- W2001747071 hasConcept C97355855 @default.
- W2001747071 hasConceptScore W2001747071C106131492 @default.
- W2001747071 hasConceptScore W2001747071C111030470 @default.
- W2001747071 hasConceptScore W2001747071C11413529 @default.
- W2001747071 hasConceptScore W2001747071C119857082 @default.
- W2001747071 hasConceptScore W2001747071C121332964 @default.
- W2001747071 hasConceptScore W2001747071C124101348 @default.
- W2001747071 hasConceptScore W2001747071C13280743 @default.
- W2001747071 hasConceptScore W2001747071C138885662 @default.
- W2001747071 hasConceptScore W2001747071C148483581 @default.
- W2001747071 hasConceptScore W2001747071C153180895 @default.
- W2001747071 hasConceptScore W2001747071C154945302 @default.
- W2001747071 hasConceptScore W2001747071C168167062 @default.
- W2001747071 hasConceptScore W2001747071C177264268 @default.
- W2001747071 hasConceptScore W2001747071C185798385 @default.