Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001781153> ?p ?o ?g. }
- W2001781153 abstract "Abstract Background The availability of microarrays measuring thousands of genes simultaneously across hundreds of biological conditions represents an opportunity to understand both individual biological pathways and the integrated workings of the cell. However, translating this amount of data into biological insight remains a daunting task. An important initial step in the analysis of microarray data is clustering of genes with similar behavior. A number of classical techniques are commonly used to perform this task, particularly hierarchical and K-means clustering, and many novel approaches have been suggested recently. While these approaches are useful, they are not without drawbacks; these methods can find clusters in purely random data, and even clusters enriched for biological functions can be skewed towards a small number of processes (e.g. ribosomes). Results We developed Nearest Neighbor Networks (NNN), a graph-based algorithm to generate clusters of genes with similar expression profiles. This method produces clusters based on overlapping cliques within an interaction network generated from mutual nearest neighborhoods. This focus on nearest neighbors rather than on absolute distance measures allows us to capture clusters with high connectivity even when they are spatially separated, and requiring mutual nearest neighbors allows genes with no sufficiently similar partners to remain unclustered. We compared the clusters generated by NNN with those generated by eight other clustering methods. NNN was particularly successful at generating functionally coherent clusters with high precision, and these clusters generally represented a much broader selection of biological processes than those recovered by other methods. Conclusion The Nearest Neighbor Networks algorithm is a valuable clustering method that effectively groups genes that are likely to be functionally related. It is particularly attractive due to its simplicity, its success in the analysis of large datasets, and its ability to span a wide range of biological functions with high precision." @default.
- W2001781153 created "2016-06-24" @default.
- W2001781153 creator A5001506665 @default.
- W2001781153 creator A5007835627 @default.
- W2001781153 creator A5008844345 @default.
- W2001781153 creator A5008880192 @default.
- W2001781153 creator A5022226374 @default.
- W2001781153 creator A5025250742 @default.
- W2001781153 creator A5046514514 @default.
- W2001781153 creator A5058170268 @default.
- W2001781153 creator A5062382712 @default.
- W2001781153 creator A5079418680 @default.
- W2001781153 date "2007-07-12" @default.
- W2001781153 modified "2023-10-16" @default.
- W2001781153 title "Nearest Neighbor Networks: clustering expression data based on gene neighborhoods" @default.
- W2001781153 cites W1493217831 @default.
- W2001781153 cites W1517816201 @default.
- W2001781153 cites W1535354154 @default.
- W2001781153 cites W1556472699 @default.
- W2001781153 cites W1970964234 @default.
- W2001781153 cites W1976208596 @default.
- W2001781153 cites W1976625175 @default.
- W2001781153 cites W2006101746 @default.
- W2001781153 cites W2019655981 @default.
- W2001781153 cites W2021129827 @default.
- W2001781153 cites W2024853484 @default.
- W2001781153 cites W2062014401 @default.
- W2001781153 cites W2081535641 @default.
- W2001781153 cites W2096863518 @default.
- W2001781153 cites W2103017472 @default.
- W2001781153 cites W2103453943 @default.
- W2001781153 cites W2107276215 @default.
- W2001781153 cites W2109174028 @default.
- W2001781153 cites W2109619915 @default.
- W2001781153 cites W2109639554 @default.
- W2001781153 cites W2117044793 @default.
- W2001781153 cites W2118382442 @default.
- W2001781153 cites W2126449841 @default.
- W2001781153 cites W2131073294 @default.
- W2001781153 cites W2133210805 @default.
- W2001781153 cites W2135000328 @default.
- W2001781153 cites W2136107412 @default.
- W2001781153 cites W2137683543 @default.
- W2001781153 cites W2150926065 @default.
- W2001781153 cites W2152155643 @default.
- W2001781153 cites W2152360905 @default.
- W2001781153 cites W2152896172 @default.
- W2001781153 cites W2159460045 @default.
- W2001781153 cites W2159686118 @default.
- W2001781153 cites W2162142896 @default.
- W2001781153 cites W2476899828 @default.
- W2001781153 cites W2611831635 @default.
- W2001781153 cites W45534775 @default.
- W2001781153 doi "https://doi.org/10.1186/1471-2105-8-250" @default.
- W2001781153 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1941745" @default.
- W2001781153 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17626636" @default.
- W2001781153 hasPublicationYear "2007" @default.
- W2001781153 type Work @default.
- W2001781153 sameAs 2001781153 @default.
- W2001781153 citedByCount "63" @default.
- W2001781153 countsByYear W20017811532012 @default.
- W2001781153 countsByYear W20017811532013 @default.
- W2001781153 countsByYear W20017811532014 @default.
- W2001781153 countsByYear W20017811532015 @default.
- W2001781153 countsByYear W20017811532017 @default.
- W2001781153 countsByYear W20017811532018 @default.
- W2001781153 countsByYear W20017811532019 @default.
- W2001781153 countsByYear W20017811532020 @default.
- W2001781153 countsByYear W20017811532021 @default.
- W2001781153 countsByYear W20017811532022 @default.
- W2001781153 countsByYear W20017811532023 @default.
- W2001781153 crossrefType "journal-article" @default.
- W2001781153 hasAuthorship W2001781153A5001506665 @default.
- W2001781153 hasAuthorship W2001781153A5007835627 @default.
- W2001781153 hasAuthorship W2001781153A5008844345 @default.
- W2001781153 hasAuthorship W2001781153A5008880192 @default.
- W2001781153 hasAuthorship W2001781153A5022226374 @default.
- W2001781153 hasAuthorship W2001781153A5025250742 @default.
- W2001781153 hasAuthorship W2001781153A5046514514 @default.
- W2001781153 hasAuthorship W2001781153A5058170268 @default.
- W2001781153 hasAuthorship W2001781153A5062382712 @default.
- W2001781153 hasAuthorship W2001781153A5079418680 @default.
- W2001781153 hasBestOaLocation W20017811531 @default.
- W2001781153 hasConcept C102164700 @default.
- W2001781153 hasConcept C104047586 @default.
- W2001781153 hasConcept C104317684 @default.
- W2001781153 hasConcept C113238511 @default.
- W2001781153 hasConcept C124101348 @default.
- W2001781153 hasConcept C150194340 @default.
- W2001781153 hasConcept C154945302 @default.
- W2001781153 hasConcept C201797286 @default.
- W2001781153 hasConcept C28225019 @default.
- W2001781153 hasConcept C41008148 @default.
- W2001781153 hasConcept C54355233 @default.
- W2001781153 hasConcept C60644358 @default.
- W2001781153 hasConcept C67339327 @default.
- W2001781153 hasConcept C70721500 @default.
- W2001781153 hasConcept C73555534 @default.
- W2001781153 hasConcept C81917197 @default.
- W2001781153 hasConcept C86803240 @default.