Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001796331> ?p ?o ?g. }
- W2001796331 endingPage "247" @default.
- W2001796331 startingPage "233" @default.
- W2001796331 abstract "We have theoretically and experimentally analyzed the laser-induced evaporation process for deposition of superconducting thin films from bulk targets. The spatial thickness variations have been found to be significantly different from a conventional thermal deposition process. Unlike a cos θ thickness variation expected from a thermal evaporation process, the laser evaporation process is characterized by a forward-directed deposit with a sharp variation in its thickness as a function of distance from the center of the deposit. We have studied in detail the interactions of nanosecond excimer laser pulses with bulk YBa2Cu3O7 targets leading to evaporation, plasma formation, and subsequent deposition of thin films. A theoretical model for simulating the pulsed laser evaporation (PLE) process has been developed. This model considers an anisotropic three-dimensional expansion of the laser-generated plasma, initially at high temperature and pressure. The forward-directed nature of laser deposition has been found to result from anisotropic expansion velocities of the plasma edges arising due to the density gradients in the gaseous plasma. The physical process of the laser ablation technique for deposition of thin films can be classified into three separate interaction regimes: (i) interaction of the laser beam with the bulk target, (ii) plasma formation and initial isothermal expansion, and (iii) adiabatic expansion leading to deposition of thin films. The first two regimes occur during the time interval of the laser pulse, while the last regime initiates after the laser pulse terminates. Under PLE conditions, the evaporation of the target is assumed to be thermal in nature, while the plasma expansion dynamics is nonthermal as a result of interaction of the laser beam with the evaporated material. The expansion velocities of the plasma edges are related to the initial dimensions and temperature of the plasma, and the atomic weight of the respective species present in it. Preliminary calculations have been carried out on spatial thickness variations as a function of various parameters in PLE deposited thin films. The effects of the various beam and substrate parameters including energy density and substrate-target distance affecting the nature of deposition of superconducting thin films have been theoretically examined. Experimental results have been obtained from thin films deposited on silicon substrates by XeCl pulsed excimer laser (λ=308 nm, τ=45×10−9 s) irradiation. The spatial thickness and compositional variations in thin films have been determined using Rutherford backscattering technique and the results compared with the theoretical calculations." @default.
- W2001796331 created "2016-06-24" @default.
- W2001796331 creator A5015947687 @default.
- W2001796331 creator A5031116392 @default.
- W2001796331 creator A5082519199 @default.
- W2001796331 date "1990-07-01" @default.
- W2001796331 modified "2023-09-27" @default.
- W2001796331 title "Theoretical model for deposition of superconducting thin films using pulsed laser evaporation technique" @default.
- W2001796331 cites W1638940010 @default.
- W2001796331 cites W1965846404 @default.
- W2001796331 cites W1968605360 @default.
- W2001796331 cites W1970922993 @default.
- W2001796331 cites W1973753074 @default.
- W2001796331 cites W1985149257 @default.
- W2001796331 cites W1988521587 @default.
- W2001796331 cites W1989640664 @default.
- W2001796331 cites W1990610979 @default.
- W2001796331 cites W1991855924 @default.
- W2001796331 cites W2000887743 @default.
- W2001796331 cites W2005109577 @default.
- W2001796331 cites W2006269063 @default.
- W2001796331 cites W2013028068 @default.
- W2001796331 cites W2016623475 @default.
- W2001796331 cites W2020318405 @default.
- W2001796331 cites W2021603966 @default.
- W2001796331 cites W2022811963 @default.
- W2001796331 cites W2029019316 @default.
- W2001796331 cites W2039260184 @default.
- W2001796331 cites W2052808379 @default.
- W2001796331 cites W2054838049 @default.
- W2001796331 cites W2058063437 @default.
- W2001796331 cites W2059476719 @default.
- W2001796331 cites W2063696425 @default.
- W2001796331 cites W2079282917 @default.
- W2001796331 cites W2080206431 @default.
- W2001796331 cites W2081379335 @default.
- W2001796331 cites W2084104164 @default.
- W2001796331 cites W2087858939 @default.
- W2001796331 cites W2094716573 @default.
- W2001796331 doi "https://doi.org/10.1063/1.347123" @default.
- W2001796331 hasPublicationYear "1990" @default.
- W2001796331 type Work @default.
- W2001796331 sameAs 2001796331 @default.
- W2001796331 citedByCount "221" @default.
- W2001796331 countsByYear W20017963312012 @default.
- W2001796331 countsByYear W20017963312013 @default.
- W2001796331 countsByYear W20017963312014 @default.
- W2001796331 countsByYear W20017963312015 @default.
- W2001796331 countsByYear W20017963312016 @default.
- W2001796331 countsByYear W20017963312017 @default.
- W2001796331 countsByYear W20017963312018 @default.
- W2001796331 countsByYear W20017963312019 @default.
- W2001796331 countsByYear W20017963312020 @default.
- W2001796331 countsByYear W20017963312021 @default.
- W2001796331 countsByYear W20017963312022 @default.
- W2001796331 countsByYear W20017963312023 @default.
- W2001796331 crossrefType "journal-article" @default.
- W2001796331 hasAuthorship W2001796331A5015947687 @default.
- W2001796331 hasAuthorship W2001796331A5031116392 @default.
- W2001796331 hasAuthorship W2001796331A5082519199 @default.
- W2001796331 hasConcept C113196181 @default.
- W2001796331 hasConcept C120665830 @default.
- W2001796331 hasConcept C121332964 @default.
- W2001796331 hasConcept C151730666 @default.
- W2001796331 hasConcept C171250308 @default.
- W2001796331 hasConcept C185592680 @default.
- W2001796331 hasConcept C19067145 @default.
- W2001796331 hasConcept C192562407 @default.
- W2001796331 hasConcept C2779188808 @default.
- W2001796331 hasConcept C2780477314 @default.
- W2001796331 hasConcept C2816523 @default.
- W2001796331 hasConcept C37982897 @default.
- W2001796331 hasConcept C43617362 @default.
- W2001796331 hasConcept C520434653 @default.
- W2001796331 hasConcept C61441594 @default.
- W2001796331 hasConcept C62520636 @default.
- W2001796331 hasConcept C64297162 @default.
- W2001796331 hasConcept C82706917 @default.
- W2001796331 hasConcept C86803240 @default.
- W2001796331 hasConcept C97355855 @default.
- W2001796331 hasConceptScore W2001796331C113196181 @default.
- W2001796331 hasConceptScore W2001796331C120665830 @default.
- W2001796331 hasConceptScore W2001796331C121332964 @default.
- W2001796331 hasConceptScore W2001796331C151730666 @default.
- W2001796331 hasConceptScore W2001796331C171250308 @default.
- W2001796331 hasConceptScore W2001796331C185592680 @default.
- W2001796331 hasConceptScore W2001796331C19067145 @default.
- W2001796331 hasConceptScore W2001796331C192562407 @default.
- W2001796331 hasConceptScore W2001796331C2779188808 @default.
- W2001796331 hasConceptScore W2001796331C2780477314 @default.
- W2001796331 hasConceptScore W2001796331C2816523 @default.
- W2001796331 hasConceptScore W2001796331C37982897 @default.
- W2001796331 hasConceptScore W2001796331C43617362 @default.
- W2001796331 hasConceptScore W2001796331C520434653 @default.
- W2001796331 hasConceptScore W2001796331C61441594 @default.
- W2001796331 hasConceptScore W2001796331C62520636 @default.
- W2001796331 hasConceptScore W2001796331C64297162 @default.
- W2001796331 hasConceptScore W2001796331C82706917 @default.