Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001837653> ?p ?o ?g. }
- W2001837653 endingPage "376" @default.
- W2001837653 startingPage "343" @default.
- W2001837653 abstract "This work deals with the behavior—in the $L_2$ norm—of the condition number and distribution of the $L_2$ singular values of the preconditioned operators $B_h^{ - 1} A_h $ and $A_h B_h^{ - 1} $, where $A_h$ and $B_h$ are finite element discretizations of second-order elliptic operators, A and B. In an earlier work, Manteuflel and Parter [SIAM J. Numer. Anal., 27 (1989), pp. 656–694] proved that $B_h^{ - 1} A_h (A_h B_h^{ - 1} )$ have a uniformly bounded $L_2$ condition number if and only if $A^ * $ and $B^ * $ (A and B) have the same boundary conditions. This earlier work used the $H_2$ regularity of A and B, as well as optimal $L_2$ error estimates and a quasi-uniform grid for the finite element spaces. In the present paper, we first extend these condition number results to the case in which neither $H_2$ regularity (and hence optimal $L_2$ error estimates) nor the quasi-uniformity assumption need be satisfied. Instead, it is assumed that the principal part of the preconditioning operator B is a scalar multiple, ${1 / mu }$, of the principal part of A. It is also proven in this case that the operators $Q = B^{ - 1} A - mu I$ and $tilde Q = AB^{ - 1} mu I$ are compact, and the corresponding discrete operators are collectively compact and consistent approximations to Q and $tilde Q$. Using this, it is shown that the $L_2$ singular values of $B_h^{ - 1} A_h $ and $A_h B_h^{ - 1} $ “fill” the interval $[mu _0 ,mu _1 ]$ where $mu _0 > 0$ and $mu _1 $ are the minimum and maximum values of $mu $. Moreover, for any $varepsilon > 0$ there are (at most) a finite number, $n(varepsilon )$, of singular values outside the interval $[mu _0 - varepsilon ,mu _1 + varepsilon ]$. Analogous results are also proven for the case when $B_h^{ - 1} $ is replaced by a more practical preconditioner, say $dot B_h^{ - 1} $, which is equivalent to $B_h^{ - 1} $ in the $L_2$ norm. This has important implications for the solution of the preconditioned discrete equations using the conjugate gradient method. In particular, the convergence rate will be better than the usual bound obtained using condition number estimates. Finally, some matrix implementations for both the left and right preconditioned normal equations are discussed in detail. These include implementations that avoid the inversion of the mass matrix." @default.
- W2001837653 created "2016-06-24" @default.
- W2001837653 creator A5008694561 @default.
- W2001837653 creator A5034046818 @default.
- W2001837653 creator A5091007664 @default.
- W2001837653 date "1993-04-01" @default.
- W2001837653 modified "2023-10-14" @default.
- W2001837653 title "Preconditioning and Boundary Conditions without $H_2$ Estimates: $L_2$ Condition Numbers and the Distribution of the Singular Values" @default.
- W2001837653 cites W1982093974 @default.
- W2001837653 cites W2013285596 @default.
- W2001837653 cites W2030471585 @default.
- W2001837653 cites W2034404715 @default.
- W2001837653 cites W2036155965 @default.
- W2001837653 cites W2062618977 @default.
- W2001837653 cites W2064625750 @default.
- W2001837653 cites W2066637873 @default.
- W2001837653 cites W2071928229 @default.
- W2001837653 cites W2084644073 @default.
- W2001837653 cites W2086414247 @default.
- W2001837653 cites W2093664623 @default.
- W2001837653 cites W2094391387 @default.
- W2001837653 cites W4299150230 @default.
- W2001837653 doi "https://doi.org/10.1137/0730017" @default.
- W2001837653 hasPublicationYear "1993" @default.
- W2001837653 type Work @default.
- W2001837653 sameAs 2001837653 @default.
- W2001837653 citedByCount "23" @default.
- W2001837653 countsByYear W20018376532013 @default.
- W2001837653 countsByYear W20018376532015 @default.
- W2001837653 countsByYear W20018376532018 @default.
- W2001837653 countsByYear W20018376532020 @default.
- W2001837653 countsByYear W20018376532023 @default.
- W2001837653 crossrefType "journal-article" @default.
- W2001837653 hasAuthorship W2001837653A5008694561 @default.
- W2001837653 hasAuthorship W2001837653A5034046818 @default.
- W2001837653 hasAuthorship W2001837653A5091007664 @default.
- W2001837653 hasConcept C104317684 @default.
- W2001837653 hasConcept C109282560 @default.
- W2001837653 hasConcept C110121322 @default.
- W2001837653 hasConcept C114614502 @default.
- W2001837653 hasConcept C121332964 @default.
- W2001837653 hasConcept C134306372 @default.
- W2001837653 hasConcept C135628077 @default.
- W2001837653 hasConcept C158448853 @default.
- W2001837653 hasConcept C158693339 @default.
- W2001837653 hasConcept C17020691 @default.
- W2001837653 hasConcept C17744445 @default.
- W2001837653 hasConcept C182310444 @default.
- W2001837653 hasConcept C185592680 @default.
- W2001837653 hasConcept C191795146 @default.
- W2001837653 hasConcept C199539241 @default.
- W2001837653 hasConcept C2524010 @default.
- W2001837653 hasConcept C33923547 @default.
- W2001837653 hasConcept C34388435 @default.
- W2001837653 hasConcept C55493867 @default.
- W2001837653 hasConcept C57691317 @default.
- W2001837653 hasConcept C62520636 @default.
- W2001837653 hasConcept C70610323 @default.
- W2001837653 hasConcept C86339819 @default.
- W2001837653 hasConcept C97355855 @default.
- W2001837653 hasConceptScore W2001837653C104317684 @default.
- W2001837653 hasConceptScore W2001837653C109282560 @default.
- W2001837653 hasConceptScore W2001837653C110121322 @default.
- W2001837653 hasConceptScore W2001837653C114614502 @default.
- W2001837653 hasConceptScore W2001837653C121332964 @default.
- W2001837653 hasConceptScore W2001837653C134306372 @default.
- W2001837653 hasConceptScore W2001837653C135628077 @default.
- W2001837653 hasConceptScore W2001837653C158448853 @default.
- W2001837653 hasConceptScore W2001837653C158693339 @default.
- W2001837653 hasConceptScore W2001837653C17020691 @default.
- W2001837653 hasConceptScore W2001837653C17744445 @default.
- W2001837653 hasConceptScore W2001837653C182310444 @default.
- W2001837653 hasConceptScore W2001837653C185592680 @default.
- W2001837653 hasConceptScore W2001837653C191795146 @default.
- W2001837653 hasConceptScore W2001837653C199539241 @default.
- W2001837653 hasConceptScore W2001837653C2524010 @default.
- W2001837653 hasConceptScore W2001837653C33923547 @default.
- W2001837653 hasConceptScore W2001837653C34388435 @default.
- W2001837653 hasConceptScore W2001837653C55493867 @default.
- W2001837653 hasConceptScore W2001837653C57691317 @default.
- W2001837653 hasConceptScore W2001837653C62520636 @default.
- W2001837653 hasConceptScore W2001837653C70610323 @default.
- W2001837653 hasConceptScore W2001837653C86339819 @default.
- W2001837653 hasConceptScore W2001837653C97355855 @default.
- W2001837653 hasIssue "2" @default.
- W2001837653 hasLocation W20018376531 @default.
- W2001837653 hasOpenAccess W2001837653 @default.
- W2001837653 hasPrimaryLocation W20018376531 @default.
- W2001837653 hasRelatedWork W2053205829 @default.
- W2001837653 hasRelatedWork W2074759558 @default.
- W2001837653 hasRelatedWork W2120524150 @default.
- W2001837653 hasRelatedWork W2319057153 @default.
- W2001837653 hasRelatedWork W2325128071 @default.
- W2001837653 hasRelatedWork W2363990114 @default.
- W2001837653 hasRelatedWork W2376815956 @default.
- W2001837653 hasRelatedWork W4200635170 @default.
- W2001837653 hasRelatedWork W4226512248 @default.
- W2001837653 hasRelatedWork W4294795369 @default.