Matches in SemOpenAlex for { <https://semopenalex.org/work/W2001942923> ?p ?o ?g. }
- W2001942923 endingPage "19" @default.
- W2001942923 startingPage "8" @default.
- W2001942923 abstract "This paper provides an exergetic analysis of a 10 MW high concentration photovoltaic thermal (HCPVT) power plant case study located in Hammam Bou Hadjar, Algeria. The novel HCPVT multi-energy carrier plant converts 25% of the direct normal irradiance (DNI) into electrical energy and 62.5% to low grade heat for a combined efficiency of 87.5%. The HCPVT system employs a point focus dish concentrator with a cooled PV receiver module. The novel “hot-water” cooling approach is used for energy reuse purposes and is enabled by our state-of-the-art substrate integrated micro-cooling technology. The high performance cooler of the receiver with a thermal resistance of <0.12 cm2 K/W enables the receiver module to handle concentrations of up to 5000 suns. In the present study, a concentration of 2000 suns allows using coolant fluid temperatures of up to 80 °C. This key innovation ensures reliable operation of the triple junction PV (3JPV) cells used and also allows heat recovery for utilization in other thermal applications such as space cooling, heating, and desalination. Within this context, an exergoeconomics analysis of photovoltaic thermal co-generation for space cooling is presented in this manuscript. The valuation method presented here for the HCPVT multi-energy carrier plant comprises both the technical and economic perspectives. The proposed model determines how the cost structure is evolving in four different scenarios by quantifying the potential thermal energy demand in Hammam Bou Hadjar. The model pins down the influence of technical details such as the exergetic efficiency to the economic value of the otherwise wasted heat. The thermal energy reuse boosts the power station׳s overall yield, reduces total average costs and optimizes power supply as fixed capital is deployed more efficiently. It is observed that even though potential cooling demand can be substantial (19,490 MWh per household), prices for cooling should be 3 times lower than those of electricity in Algeria (18 USD/MWh) to be competitive. This implies a need to reach economies of scale in the production of individual key components of the HCPVT system. The net present value (NPV) is calculated taking growth rates and the system׳s modular efficiencies into account, discounted over 25 years. Scenario 1 shows that even though Algeria currently has no market for thermal energy, a break-even quantity (49,728 MWh) can be deduced by taking into account the relation between fixed costs and the marginal profit. Scenario 2 focuses on the national growth rate needed to break even, i.e. +10.92%. Scenario 3 illustrates thermal price variations given an increase in the Coefficient of Performance (COP) of a thermally driven adsorption chiller after year 10. In this case, the price for cooling will decrease from 18 USD/MWh to 14 USD/MWh. Finally, scenario 4 depicts Hammam Bou Hadjar׳s potential cooling demand per household and the growth rate needed to break even if a market for heat would exist." @default.
- W2001942923 created "2016-06-24" @default.
- W2001942923 creator A5032259363 @default.
- W2001942923 creator A5037226881 @default.
- W2001942923 creator A5047966890 @default.
- W2001942923 creator A5088526565 @default.
- W2001942923 creator A5090220874 @default.
- W2001942923 date "2014-06-01" @default.
- W2001942923 modified "2023-09-26" @default.
- W2001942923 title "Exergoeconomic analysis of high concentration photovoltaic thermal co-generation system for space cooling" @default.
- W2001942923 cites W1497188550 @default.
- W2001942923 cites W1963937657 @default.
- W2001942923 cites W1973668920 @default.
- W2001942923 cites W1975663587 @default.
- W2001942923 cites W1976348707 @default.
- W2001942923 cites W1977480452 @default.
- W2001942923 cites W197781555 @default.
- W2001942923 cites W1978481320 @default.
- W2001942923 cites W1984490181 @default.
- W2001942923 cites W1992946276 @default.
- W2001942923 cites W1995248212 @default.
- W2001942923 cites W1997674351 @default.
- W2001942923 cites W1999841525 @default.
- W2001942923 cites W2006492483 @default.
- W2001942923 cites W2009280790 @default.
- W2001942923 cites W2009911245 @default.
- W2001942923 cites W2010423272 @default.
- W2001942923 cites W2011517656 @default.
- W2001942923 cites W2025069281 @default.
- W2001942923 cites W2026770156 @default.
- W2001942923 cites W2029523494 @default.
- W2001942923 cites W2030116401 @default.
- W2001942923 cites W2041556223 @default.
- W2001942923 cites W2041805728 @default.
- W2001942923 cites W2045093317 @default.
- W2001942923 cites W2046690454 @default.
- W2001942923 cites W2046716936 @default.
- W2001942923 cites W2047972956 @default.
- W2001942923 cites W2050866993 @default.
- W2001942923 cites W2051040671 @default.
- W2001942923 cites W2052712820 @default.
- W2001942923 cites W2053636163 @default.
- W2001942923 cites W2057466210 @default.
- W2001942923 cites W2058507279 @default.
- W2001942923 cites W2059390247 @default.
- W2001942923 cites W2059748592 @default.
- W2001942923 cites W2064878097 @default.
- W2001942923 cites W2078308967 @default.
- W2001942923 cites W2083302786 @default.
- W2001942923 cites W2084548840 @default.
- W2001942923 cites W2087937009 @default.
- W2001942923 cites W2090519047 @default.
- W2001942923 cites W2094500754 @default.
- W2001942923 cites W2095488491 @default.
- W2001942923 cites W2098487618 @default.
- W2001942923 cites W2106729225 @default.
- W2001942923 cites W2126623840 @default.
- W2001942923 cites W2132823085 @default.
- W2001942923 cites W2138823634 @default.
- W2001942923 cites W2144980290 @default.
- W2001942923 cites W2152912155 @default.
- W2001942923 cites W2154091560 @default.
- W2001942923 cites W2165294146 @default.
- W2001942923 cites W2328785595 @default.
- W2001942923 cites W2534859665 @default.
- W2001942923 cites W3097796162 @default.
- W2001942923 cites W3125707644 @default.
- W2001942923 cites W4240164113 @default.
- W2001942923 doi "https://doi.org/10.1016/j.rser.2014.02.037" @default.
- W2001942923 hasPublicationYear "2014" @default.
- W2001942923 type Work @default.
- W2001942923 sameAs 2001942923 @default.
- W2001942923 citedByCount "32" @default.
- W2001942923 countsByYear W20019429232014 @default.
- W2001942923 countsByYear W20019429232015 @default.
- W2001942923 countsByYear W20019429232016 @default.
- W2001942923 countsByYear W20019429232017 @default.
- W2001942923 countsByYear W20019429232018 @default.
- W2001942923 countsByYear W20019429232019 @default.
- W2001942923 countsByYear W20019429232020 @default.
- W2001942923 countsByYear W20019429232021 @default.
- W2001942923 countsByYear W20019429232022 @default.
- W2001942923 countsByYear W20019429232023 @default.
- W2001942923 crossrefType "journal-article" @default.
- W2001942923 hasAuthorship W2001942923A5032259363 @default.
- W2001942923 hasAuthorship W2001942923A5037226881 @default.
- W2001942923 hasAuthorship W2001942923A5047966890 @default.
- W2001942923 hasAuthorship W2001942923A5088526565 @default.
- W2001942923 hasAuthorship W2001942923A5090220874 @default.
- W2001942923 hasConcept C116915560 @default.
- W2001942923 hasConcept C119599485 @default.
- W2001942923 hasConcept C121332964 @default.
- W2001942923 hasConcept C127413603 @default.
- W2001942923 hasConcept C128458982 @default.
- W2001942923 hasConcept C136021498 @default.
- W2001942923 hasConcept C156820238 @default.
- W2001942923 hasConcept C192562407 @default.
- W2001942923 hasConcept C204530211 @default.