Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002016031> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2002016031 abstract "Markov logic network (MLN) is an important model of statistical relational learning. Learning MLN from data is important in constructing MLN. Real-world data usually contains missing data, learning MLN from missing data is more difficult than learning it from complete data, because we can't compute the exact number of the cases. We put forward a MLN learning algorithm MEM (MLN Expectation Maximization), it can learn MLN from relational missing data by expanding EM algorithm with our previous works. We define relational missing data, design initial MLN and complete algorithm for the relational missing data. Both theoretical analysis and experimental results show that MEM can effectively learn MLN from relational missing data." @default.
- W2002016031 created "2016-06-24" @default.
- W2002016031 creator A5060778662 @default.
- W2002016031 creator A5068158882 @default.
- W2002016031 creator A5079735658 @default.
- W2002016031 creator A5090076224 @default.
- W2002016031 date "2007-08-01" @default.
- W2002016031 modified "2023-10-18" @default.
- W2002016031 title "A Markov Logic Network Learning Algorithm From Relational Missing Data" @default.
- W2002016031 cites W1523680690 @default.
- W2002016031 cites W1550634610 @default.
- W2002016031 cites W1553801261 @default.
- W2002016031 cites W1666347389 @default.
- W2002016031 cites W1977970897 @default.
- W2002016031 cites W2121075864 @default.
- W2002016031 cites W2149612380 @default.
- W2002016031 cites W2385741303 @default.
- W2002016031 cites W28766783 @default.
- W2002016031 cites W47392883 @default.
- W2002016031 doi "https://doi.org/10.1109/nlpke.2007.4368009" @default.
- W2002016031 hasPublicationYear "2007" @default.
- W2002016031 type Work @default.
- W2002016031 sameAs 2002016031 @default.
- W2002016031 citedByCount "0" @default.
- W2002016031 crossrefType "proceedings-article" @default.
- W2002016031 hasAuthorship W2002016031A5060778662 @default.
- W2002016031 hasAuthorship W2002016031A5068158882 @default.
- W2002016031 hasAuthorship W2002016031A5079735658 @default.
- W2002016031 hasAuthorship W2002016031A5090076224 @default.
- W2002016031 hasConcept C105795698 @default.
- W2002016031 hasConcept C11413529 @default.
- W2002016031 hasConcept C119857082 @default.
- W2002016031 hasConcept C124101348 @default.
- W2002016031 hasConcept C154945302 @default.
- W2002016031 hasConcept C177877439 @default.
- W2002016031 hasConcept C182081679 @default.
- W2002016031 hasConcept C33923547 @default.
- W2002016031 hasConcept C41008148 @default.
- W2002016031 hasConcept C49781872 @default.
- W2002016031 hasConcept C5655090 @default.
- W2002016031 hasConcept C9357733 @default.
- W2002016031 hasConcept C98763669 @default.
- W2002016031 hasConceptScore W2002016031C105795698 @default.
- W2002016031 hasConceptScore W2002016031C11413529 @default.
- W2002016031 hasConceptScore W2002016031C119857082 @default.
- W2002016031 hasConceptScore W2002016031C124101348 @default.
- W2002016031 hasConceptScore W2002016031C154945302 @default.
- W2002016031 hasConceptScore W2002016031C177877439 @default.
- W2002016031 hasConceptScore W2002016031C182081679 @default.
- W2002016031 hasConceptScore W2002016031C33923547 @default.
- W2002016031 hasConceptScore W2002016031C41008148 @default.
- W2002016031 hasConceptScore W2002016031C49781872 @default.
- W2002016031 hasConceptScore W2002016031C5655090 @default.
- W2002016031 hasConceptScore W2002016031C9357733 @default.
- W2002016031 hasConceptScore W2002016031C98763669 @default.
- W2002016031 hasLocation W20020160311 @default.
- W2002016031 hasOpenAccess W2002016031 @default.
- W2002016031 hasPrimaryLocation W20020160311 @default.
- W2002016031 hasRelatedWork W2002016031 @default.
- W2002016031 hasRelatedWork W2150678881 @default.
- W2002016031 hasRelatedWork W2183052074 @default.
- W2002016031 hasRelatedWork W2386792210 @default.
- W2002016031 hasRelatedWork W2389529561 @default.
- W2002016031 hasRelatedWork W2391760446 @default.
- W2002016031 hasRelatedWork W2748952813 @default.
- W2002016031 hasRelatedWork W2908756996 @default.
- W2002016031 hasRelatedWork W3016364280 @default.
- W2002016031 hasRelatedWork W3107474891 @default.
- W2002016031 isParatext "false" @default.
- W2002016031 isRetracted "false" @default.
- W2002016031 magId "2002016031" @default.
- W2002016031 workType "article" @default.