Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002022751> ?p ?o ?g. }
- W2002022751 endingPage "5063" @default.
- W2002022751 startingPage "5040" @default.
- W2002022751 abstract "Leaf Area Index (LAI) is an important input variable for forest ecosystem modeling as it is a factor in predicting productivity and biomass, two key aspects of forest health. Current in situ methods of determining LAI are sometimes destructive and generally very time consuming. Other LAI derivation methods, mainly satellite-based in nature, do not provide sufficient spatial resolution or the precision required by forest managers for tactical planning. This paper focuses on estimating LAI from: (i) height and density metrics derived from Light Detection and Ranging (LiDAR); (ii) spectral vegetation indices (SVIs), in particular the Normalized Difference Vegetation Index (NDVI); and (iii) a combination of these methods. For the Hearst Forest of Northern Ontario, in situ measurements of LAI were derived from digital hemispherical photographs (DHPs) while remote sensing variables were derived from low density LiDAR (i.e., 1 m−2) and high spatial resolution WorldView-2 data (2 m). Multiple Linear Regression (MLR) models were generated using these variables. Results from these analyses demonstrate: (i) moderate explanatory power (i.e., R2 = 0.53) for LiDAR height and density metrics that have proven to be related to canopy structure; (ii) no relationship when using SVIs; and (iii) no significant improvement of LiDAR models when combining them with SVI variables. The results suggest that LiDAR models in boreal forest environments provide satisfactory estimations of LAI, even with narrow ranges of LAI for model calibration. Models derived from low point density LiDAR in a mixedwood boreal environment seem to offer a reliable method of estimating LAI at high spatial resolution for decision makers in the forestry community. This method can be easily incorporated into simultaneous modeling efforts for forest inventory variables using LiDAR." @default.
- W2002022751 created "2016-06-24" @default.
- W2002022751 creator A5020076031 @default.
- W2002022751 creator A5043761294 @default.
- W2002022751 date "2013-10-14" @default.
- W2002022751 modified "2023-10-10" @default.
- W2002022751 title "Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR) and WorldView-2 Imagery" @default.
- W2002022751 cites W1964217023 @default.
- W2002022751 cites W1967248741 @default.
- W2002022751 cites W1969939898 @default.
- W2002022751 cites W1973263162 @default.
- W2002022751 cites W1973410094 @default.
- W2002022751 cites W1973428156 @default.
- W2002022751 cites W1974789528 @default.
- W2002022751 cites W2008064158 @default.
- W2002022751 cites W2014625208 @default.
- W2002022751 cites W2015148755 @default.
- W2002022751 cites W2020095931 @default.
- W2002022751 cites W2032305420 @default.
- W2002022751 cites W2039393981 @default.
- W2002022751 cites W2049191558 @default.
- W2002022751 cites W2070201364 @default.
- W2002022751 cites W2075924440 @default.
- W2002022751 cites W2095958845 @default.
- W2002022751 cites W2106245975 @default.
- W2002022751 cites W2112850050 @default.
- W2002022751 cites W2113488626 @default.
- W2002022751 cites W2116178980 @default.
- W2002022751 cites W2125975229 @default.
- W2002022751 cites W2134769768 @default.
- W2002022751 cites W2137203802 @default.
- W2002022751 cites W2147558875 @default.
- W2002022751 cites W2156114555 @default.
- W2002022751 cites W2157334214 @default.
- W2002022751 cites W2158669261 @default.
- W2002022751 cites W2165928873 @default.
- W2002022751 cites W2169874044 @default.
- W2002022751 cites W2333389735 @default.
- W2002022751 cites W2334256381 @default.
- W2002022751 cites W4229914698 @default.
- W2002022751 cites W4233760599 @default.
- W2002022751 doi "https://doi.org/10.3390/rs5105040" @default.
- W2002022751 hasPublicationYear "2013" @default.
- W2002022751 type Work @default.
- W2002022751 sameAs 2002022751 @default.
- W2002022751 citedByCount "54" @default.
- W2002022751 countsByYear W20020227512014 @default.
- W2002022751 countsByYear W20020227512015 @default.
- W2002022751 countsByYear W20020227512016 @default.
- W2002022751 countsByYear W20020227512017 @default.
- W2002022751 countsByYear W20020227512018 @default.
- W2002022751 countsByYear W20020227512019 @default.
- W2002022751 countsByYear W20020227512020 @default.
- W2002022751 countsByYear W20020227512021 @default.
- W2002022751 countsByYear W20020227512022 @default.
- W2002022751 countsByYear W20020227512023 @default.
- W2002022751 crossrefType "journal-article" @default.
- W2002022751 hasAuthorship W2002022751A5020076031 @default.
- W2002022751 hasAuthorship W2002022751A5043761294 @default.
- W2002022751 hasBestOaLocation W20020227511 @default.
- W2002022751 hasConcept C100537666 @default.
- W2002022751 hasConcept C101000010 @default.
- W2002022751 hasConcept C115051666 @default.
- W2002022751 hasConcept C13280743 @default.
- W2002022751 hasConcept C142724271 @default.
- W2002022751 hasConcept C1549246 @default.
- W2002022751 hasConcept C166957645 @default.
- W2002022751 hasConcept C18903297 @default.
- W2002022751 hasConcept C205649164 @default.
- W2002022751 hasConcept C25989453 @default.
- W2002022751 hasConcept C2776133958 @default.
- W2002022751 hasConcept C39432304 @default.
- W2002022751 hasConcept C51399673 @default.
- W2002022751 hasConcept C62649853 @default.
- W2002022751 hasConcept C71924100 @default.
- W2002022751 hasConcept C86803240 @default.
- W2002022751 hasConcept C87621631 @default.
- W2002022751 hasConcept C97137747 @default.
- W2002022751 hasConceptScore W2002022751C100537666 @default.
- W2002022751 hasConceptScore W2002022751C101000010 @default.
- W2002022751 hasConceptScore W2002022751C115051666 @default.
- W2002022751 hasConceptScore W2002022751C13280743 @default.
- W2002022751 hasConceptScore W2002022751C142724271 @default.
- W2002022751 hasConceptScore W2002022751C1549246 @default.
- W2002022751 hasConceptScore W2002022751C166957645 @default.
- W2002022751 hasConceptScore W2002022751C18903297 @default.
- W2002022751 hasConceptScore W2002022751C205649164 @default.
- W2002022751 hasConceptScore W2002022751C25989453 @default.
- W2002022751 hasConceptScore W2002022751C2776133958 @default.
- W2002022751 hasConceptScore W2002022751C39432304 @default.
- W2002022751 hasConceptScore W2002022751C51399673 @default.
- W2002022751 hasConceptScore W2002022751C62649853 @default.
- W2002022751 hasConceptScore W2002022751C71924100 @default.
- W2002022751 hasConceptScore W2002022751C86803240 @default.
- W2002022751 hasConceptScore W2002022751C87621631 @default.
- W2002022751 hasConceptScore W2002022751C97137747 @default.
- W2002022751 hasIssue "10" @default.
- W2002022751 hasLocation W20020227511 @default.