Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002025905> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2002025905 endingPage "53" @default.
- W2002025905 startingPage "42" @default.
- W2002025905 abstract "The problems of bankruptcy prediction and fraud detection have been extensively considered in the financial literature. The objective of this work is twofold. Firstly, we investigate the efficiency of multi-instance learning in bankruptcy prediction. For this reason, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 150 failed and solvent Greek firms in the recent period. It was found that multi-instance learning algorithms could enable experts to predict bankruptcies with satisfying accuracy. Secondly, we explore the effectiveness of multi-instance learning techniques in detecting firms that issue fraudulent financial statements (FFS). Therefore, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms. The results show that MIBoost algorithm with Decision Stump as base learner had the best accuracy in comparison with other multi-instance learners and single supervised machine learning techniques." @default.
- W2002025905 created "2016-06-24" @default.
- W2002025905 creator A5018069693 @default.
- W2002025905 creator A5066370772 @default.
- W2002025905 creator A5073031308 @default.
- W2002025905 date "2010-10-31" @default.
- W2002025905 modified "2023-09-25" @default.
- W2002025905 title "Financial Application of Multi-Instance Learning: Two Greek Case Studies" @default.
- W2002025905 cites W1492155385 @default.
- W2002025905 cites W1492698999 @default.
- W2002025905 cites W1534477342 @default.
- W2002025905 cites W1534519302 @default.
- W2002025905 cites W1570448133 @default.
- W2002025905 cites W1570897518 @default.
- W2002025905 cites W1572005155 @default.
- W2002025905 cites W1966873979 @default.
- W2002025905 cites W1967186050 @default.
- W2002025905 cites W1968713998 @default.
- W2002025905 cites W1970908217 @default.
- W2002025905 cites W1979711143 @default.
- W2002025905 cites W1986859285 @default.
- W2002025905 cites W1987080542 @default.
- W2002025905 cites W1988221687 @default.
- W2002025905 cites W1996801166 @default.
- W2002025905 cites W2007983128 @default.
- W2002025905 cites W2023878666 @default.
- W2002025905 cites W2029801487 @default.
- W2002025905 cites W2031979791 @default.
- W2002025905 cites W2032784723 @default.
- W2002025905 cites W2037259939 @default.
- W2002025905 cites W2038565708 @default.
- W2002025905 cites W2052144146 @default.
- W2002025905 cites W2055133036 @default.
- W2002025905 cites W2058417559 @default.
- W2002025905 cites W2063269836 @default.
- W2002025905 cites W2065052734 @default.
- W2002025905 cites W2078579128 @default.
- W2002025905 cites W2079402140 @default.
- W2002025905 cites W2085573882 @default.
- W2002025905 cites W2093825590 @default.
- W2002025905 cites W2094502467 @default.
- W2002025905 cites W2101726556 @default.
- W2002025905 cites W2106446426 @default.
- W2002025905 cites W2108745803 @default.
- W2002025905 cites W2109798029 @default.
- W2002025905 cites W2110119381 @default.
- W2002025905 cites W2115682519 @default.
- W2002025905 cites W2123504579 @default.
- W2002025905 cites W2136156070 @default.
- W2002025905 cites W2147042167 @default.
- W2002025905 cites W2149237927 @default.
- W2002025905 cites W2154318594 @default.
- W2002025905 cites W2163474322 @default.
- W2002025905 cites W229683996 @default.
- W2002025905 cites W2966207845 @default.
- W2002025905 cites W2971034605 @default.
- W2002025905 cites W3121295534 @default.
- W2002025905 cites W395066339 @default.
- W2002025905 cites W1966510486 @default.
- W2002025905 doi "https://doi.org/10.4156/jcit.vol5.issue8.5" @default.
- W2002025905 hasPublicationYear "2010" @default.
- W2002025905 type Work @default.
- W2002025905 sameAs 2002025905 @default.
- W2002025905 citedByCount "2" @default.
- W2002025905 countsByYear W20020259052013 @default.
- W2002025905 countsByYear W20020259052016 @default.
- W2002025905 crossrefType "journal-article" @default.
- W2002025905 hasAuthorship W2002025905A5018069693 @default.
- W2002025905 hasAuthorship W2002025905A5066370772 @default.
- W2002025905 hasAuthorship W2002025905A5073031308 @default.
- W2002025905 hasConcept C10138342 @default.
- W2002025905 hasConcept C144133560 @default.
- W2002025905 hasConcept C154945302 @default.
- W2002025905 hasConcept C41008148 @default.
- W2002025905 hasConceptScore W2002025905C10138342 @default.
- W2002025905 hasConceptScore W2002025905C144133560 @default.
- W2002025905 hasConceptScore W2002025905C154945302 @default.
- W2002025905 hasConceptScore W2002025905C41008148 @default.
- W2002025905 hasIssue "8" @default.
- W2002025905 hasLocation W20020259051 @default.
- W2002025905 hasOpenAccess W2002025905 @default.
- W2002025905 hasPrimaryLocation W20020259051 @default.
- W2002025905 hasRelatedWork W2096946506 @default.
- W2002025905 hasRelatedWork W2350741829 @default.
- W2002025905 hasRelatedWork W2358668433 @default.
- W2002025905 hasRelatedWork W2376932109 @default.
- W2002025905 hasRelatedWork W2382290278 @default.
- W2002025905 hasRelatedWork W2390279801 @default.
- W2002025905 hasRelatedWork W2748952813 @default.
- W2002025905 hasRelatedWork W2899084033 @default.
- W2002025905 hasRelatedWork W3004735627 @default.
- W2002025905 hasRelatedWork W3107474891 @default.
- W2002025905 hasVolume "5" @default.
- W2002025905 isParatext "false" @default.
- W2002025905 isRetracted "false" @default.
- W2002025905 magId "2002025905" @default.
- W2002025905 workType "article" @default.