Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002051255> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2002051255 endingPage "2197" @default.
- W2002051255 startingPage "2187" @default.
- W2002051255 abstract "The problem of optium reception of M-ary Gaussian signals in Gaussian noise is to specify, in terms of the observable waveform, a scheme for deciding among M alternative mean and covariance functions with minimum error probability. Although much literature on the problem exists, a mathematically rigorous solution has yet to appear. By formulating the problem as optimum discrimination of M Gaussian measures in function space induced by the mean and covariance functions, this paper presents such a solution. Let mk(t) and rk(s,t), k &equal; 1, …, M, be the alternative mean and covariance functions of the Gaussian signal, and let m <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</inf> (t) and r <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</inf> (s,t) be the mean and covariance functions of the Gaussian noise. If, for each k &equal; 1, …, M, the integral equations, <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$int r_{0}(s,t)g_{k}(s) ds = m_{k}(t)$</tex> and <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$int int r_{0}(s,u)h_{k}(u,v)[r_{0}(v,t) + r_{k}(v,t)] du dv = r_{k}(s,t),$</tex> admit a square-integrable solution g <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</inf> (t) and a symmetric, square-integrable solution h <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</inf> (s,t), then the following decision scheme is optimum: given an observable waveform x(t), choose m <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</inf> (t) and r <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</inf> (s,t) if I <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</inf> (x) is the largest among all I <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>j</inf> (x), j &equal; 1, …, M, where I <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</inf> is defined by <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$I_{k}(x) = {1 over 2} int int x(s)h_{k}(s,t)x(t) ds dt + int x(t)f_{k}(t) dt + c_{k}$</tex> in which <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$f_{k}(t) = g_{k}(t) - int h_{k}(s,t)[m_{0}(s) + m_{k}(s)] ds$</tex> and c <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</inf> is a constant determined by the mean and covariance functions m <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</inf> (t), m <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</inf> (t), r <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>0</inf> (s,t) and r <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</inf> (s,t) as well as the a priori probability associated with m <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</inf> (t) and r <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</inf> (s,t). The first section introduces and defines the problem and the second presents the solution with pertinent discussions while a precise mathematical treatment is left to the appendix." @default.
- W2002051255 created "2016-06-24" @default.
- W2002051255 creator A5034063717 @default.
- W2002051255 date "1965-11-01" @default.
- W2002051255 modified "2023-10-12" @default.
- W2002051255 title "Optimum Reception of M-ary Gaussian Signals in Gaussian Noise" @default.
- W2002051255 cites W1590583843 @default.
- W2002051255 cites W1997230568 @default.
- W2002051255 cites W2101988614 @default.
- W2002051255 cites W2125603763 @default.
- W2002051255 cites W2129879335 @default.
- W2002051255 cites W2139002467 @default.
- W2002051255 doi "https://doi.org/10.1002/j.1538-7305.1965.tb03164.x" @default.
- W2002051255 hasPublicationYear "1965" @default.
- W2002051255 type Work @default.
- W2002051255 sameAs 2002051255 @default.
- W2002051255 citedByCount "15" @default.
- W2002051255 countsByYear W20020512552012 @default.
- W2002051255 crossrefType "journal-article" @default.
- W2002051255 hasAuthorship W2002051255A5034063717 @default.
- W2002051255 hasConcept C105795698 @default.
- W2002051255 hasConcept C11413529 @default.
- W2002051255 hasConcept C114614502 @default.
- W2002051255 hasConcept C115961682 @default.
- W2002051255 hasConcept C118615104 @default.
- W2002051255 hasConcept C121332964 @default.
- W2002051255 hasConcept C154945302 @default.
- W2002051255 hasConcept C163716315 @default.
- W2002051255 hasConcept C178650346 @default.
- W2002051255 hasConcept C202444582 @default.
- W2002051255 hasConcept C33923547 @default.
- W2002051255 hasConcept C41008148 @default.
- W2002051255 hasConcept C4199805 @default.
- W2002051255 hasConcept C62520636 @default.
- W2002051255 hasConcept C75413324 @default.
- W2002051255 hasConcept C99498987 @default.
- W2002051255 hasConceptScore W2002051255C105795698 @default.
- W2002051255 hasConceptScore W2002051255C11413529 @default.
- W2002051255 hasConceptScore W2002051255C114614502 @default.
- W2002051255 hasConceptScore W2002051255C115961682 @default.
- W2002051255 hasConceptScore W2002051255C118615104 @default.
- W2002051255 hasConceptScore W2002051255C121332964 @default.
- W2002051255 hasConceptScore W2002051255C154945302 @default.
- W2002051255 hasConceptScore W2002051255C163716315 @default.
- W2002051255 hasConceptScore W2002051255C178650346 @default.
- W2002051255 hasConceptScore W2002051255C202444582 @default.
- W2002051255 hasConceptScore W2002051255C33923547 @default.
- W2002051255 hasConceptScore W2002051255C41008148 @default.
- W2002051255 hasConceptScore W2002051255C4199805 @default.
- W2002051255 hasConceptScore W2002051255C62520636 @default.
- W2002051255 hasConceptScore W2002051255C75413324 @default.
- W2002051255 hasConceptScore W2002051255C99498987 @default.
- W2002051255 hasIssue "9" @default.
- W2002051255 hasLocation W20020512551 @default.
- W2002051255 hasOpenAccess W2002051255 @default.
- W2002051255 hasPrimaryLocation W20020512551 @default.
- W2002051255 hasRelatedWork W1995694936 @default.
- W2002051255 hasRelatedWork W2000889892 @default.
- W2002051255 hasRelatedWork W2002051255 @default.
- W2002051255 hasRelatedWork W2079696027 @default.
- W2002051255 hasRelatedWork W2089980404 @default.
- W2002051255 hasRelatedWork W2509835205 @default.
- W2002051255 hasRelatedWork W2604674416 @default.
- W2002051255 hasRelatedWork W2915206471 @default.
- W2002051255 hasRelatedWork W3142326235 @default.
- W2002051255 hasRelatedWork W319051877 @default.
- W2002051255 hasVolume "44" @default.
- W2002051255 isParatext "false" @default.
- W2002051255 isRetracted "false" @default.
- W2002051255 magId "2002051255" @default.
- W2002051255 workType "article" @default.