Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002065650> ?p ?o ?g. }
- W2002065650 abstract "With the growing abundance of microarray data, statistical methods are increasingly needed to integrate results across studies. Two common approaches for meta-analysis of microarrays include either combining gene expression measures across studies or combining summaries such as p-values, probabilities or ranks. Here, we compare two Bayesian meta-analysis models that are analogous to these methods.Two Bayesian meta-analysis models for microarray data have recently been introduced. The first model combines standardized gene expression measures across studies into an overall mean, accounting for inter-study variability, while the second combines probabilities of differential expression without combining expression values. Both models produce the gene-specific posterior probability of differential expression, which is the basis for inference. Since the standardized expression integration model includes inter-study variability, it may improve accuracy of results versus the probability integration model. However, due to the small number of studies typical in microarray meta-analyses, the variability between studies is challenging to estimate. The probability integration model eliminates the need to model variability between studies, and thus its implementation is more straightforward. We found in simulations of two and five studies that combining probabilities outperformed combining standardized gene expression measures for three comparison values: the percent of true discovered genes in meta-analysis versus individual studies; the percent of true genes omitted in meta-analysis versus separate studies, and the number of true discovered genes for fixed levels of Bayesian false discovery. We identified similar results when pooling two independent studies of Bacillus subtilis. We assumed that each study was produced from the same microarray platform with only two conditions: a treatment and control, and that the data sets were pre-scaled.The Bayesian meta-analysis model that combines probabilities across studies does not aggregate gene expression measures, thus an inter-study variability parameter is not included in the model. This results in a simpler modeling approach than aggregating expression measures, which accounts for variability across studies. The probability integration model identified more true discovered genes and fewer true omitted genes than combining expression measures, for our data sets." @default.
- W2002065650 created "2016-06-24" @default.
- W2002065650 creator A5041862448 @default.
- W2002065650 creator A5057528476 @default.
- W2002065650 creator A5080111960 @default.
- W2002065650 date "2007-03-07" @default.
- W2002065650 modified "2023-10-18" @default.
- W2002065650 title "Bayesian meta-analysis models for microarray data: a comparative study" @default.
- W2002065650 cites W1522879439 @default.
- W2002065650 cites W1523843467 @default.
- W2002065650 cites W1545836411 @default.
- W2002065650 cites W1551744077 @default.
- W2002065650 cites W1582495596 @default.
- W2002065650 cites W1800724332 @default.
- W2002065650 cites W1826153834 @default.
- W2002065650 cites W1971289666 @default.
- W2002065650 cites W1973325935 @default.
- W2002065650 cites W1995017987 @default.
- W2002065650 cites W2005107355 @default.
- W2002065650 cites W2038774163 @default.
- W2002065650 cites W2043463166 @default.
- W2002065650 cites W2047204673 @default.
- W2002065650 cites W2054100651 @default.
- W2002065650 cites W2060449515 @default.
- W2002065650 cites W2062353821 @default.
- W2002065650 cites W2063661220 @default.
- W2002065650 cites W2064015154 @default.
- W2002065650 cites W2067164993 @default.
- W2002065650 cites W2067306349 @default.
- W2002065650 cites W2074089196 @default.
- W2002065650 cites W2079470188 @default.
- W2002065650 cites W2099114361 @default.
- W2002065650 cites W2099880429 @default.
- W2002065650 cites W2100889355 @default.
- W2002065650 cites W2105381419 @default.
- W2002065650 cites W2108645007 @default.
- W2002065650 cites W2111513463 @default.
- W2002065650 cites W2113128520 @default.
- W2002065650 cites W2116811581 @default.
- W2002065650 cites W2117044793 @default.
- W2002065650 cites W2124201592 @default.
- W2002065650 cites W2124373444 @default.
- W2002065650 cites W2134696273 @default.
- W2002065650 cites W2144227498 @default.
- W2002065650 cites W2152155643 @default.
- W2002065650 cites W2153201655 @default.
- W2002065650 cites W2156031219 @default.
- W2002065650 cites W2156246479 @default.
- W2002065650 cites W2157795344 @default.
- W2002065650 cites W2158940923 @default.
- W2002065650 cites W2160572762 @default.
- W2002065650 cites W2170135240 @default.
- W2002065650 cites W2170264612 @default.
- W2002065650 cites W2170700353 @default.
- W2002065650 cites W4232383088 @default.
- W2002065650 cites W4243634040 @default.
- W2002065650 cites W4294107304 @default.
- W2002065650 cites W55083422 @default.
- W2002065650 doi "https://doi.org/10.1186/1471-2105-8-80" @default.
- W2002065650 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1851021" @default.
- W2002065650 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17343745" @default.
- W2002065650 hasPublicationYear "2007" @default.
- W2002065650 type Work @default.
- W2002065650 sameAs 2002065650 @default.
- W2002065650 citedByCount "46" @default.
- W2002065650 countsByYear W20020656502012 @default.
- W2002065650 countsByYear W20020656502013 @default.
- W2002065650 countsByYear W20020656502015 @default.
- W2002065650 countsByYear W20020656502016 @default.
- W2002065650 countsByYear W20020656502017 @default.
- W2002065650 countsByYear W20020656502018 @default.
- W2002065650 countsByYear W20020656502019 @default.
- W2002065650 countsByYear W20020656502020 @default.
- W2002065650 countsByYear W20020656502022 @default.
- W2002065650 crossrefType "journal-article" @default.
- W2002065650 hasAuthorship W2002065650A5041862448 @default.
- W2002065650 hasAuthorship W2002065650A5057528476 @default.
- W2002065650 hasAuthorship W2002065650A5080111960 @default.
- W2002065650 hasBestOaLocation W20020656501 @default.
- W2002065650 hasConcept C104317684 @default.
- W2002065650 hasConcept C105795698 @default.
- W2002065650 hasConcept C107673813 @default.
- W2002065650 hasConcept C124101348 @default.
- W2002065650 hasConcept C126322002 @default.
- W2002065650 hasConcept C150194340 @default.
- W2002065650 hasConcept C154945302 @default.
- W2002065650 hasConcept C160234255 @default.
- W2002065650 hasConcept C199360897 @default.
- W2002065650 hasConcept C207201462 @default.
- W2002065650 hasConcept C2776214188 @default.
- W2002065650 hasConcept C33923547 @default.
- W2002065650 hasConcept C41008148 @default.
- W2002065650 hasConcept C54355233 @default.
- W2002065650 hasConcept C70437156 @default.
- W2002065650 hasConcept C70721500 @default.
- W2002065650 hasConcept C71924100 @default.
- W2002065650 hasConcept C8415881 @default.
- W2002065650 hasConcept C86803240 @default.
- W2002065650 hasConcept C90559484 @default.
- W2002065650 hasConcept C95190672 @default.