Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002071708> ?p ?o ?g. }
- W2002071708 endingPage "14892" @default.
- W2002071708 startingPage "14879" @default.
- W2002071708 abstract "Recently, it has been shown that the catalytic chemical vapor deposition (CCVD) synthesis at atmospheric pressure of multiwalled carbon nanotubes (MWCNTs) and carbon nanofibers can be very well monitored with a tapered element oscillating microbalance (TEOM) (V. Svrcek et al., J. Chem. Phys. 2006, 124, 184705). In this paper, the temperature dependence of the MWCNTs growth by thermal CCVD is investigated. Iron nanoparticle catalysts are dispersed on porous alumina powders. It is shown by scanning electron microscopy that MWCNTs appear above 903 K. The mass increase obtained from decomposition of an ethane-hydrogen gas mixture, monitored by TEOM, occurs with a large initial transient rate v 1 generally followed by a constant steady-state rate v 2 . Activation energy of around 100 kJ/mol is derived for the constant steady-state mass increase throughout the temperature range. A kinetic three-dimensional model based on finite differences is developed to account for these kinetic results. With only two basic assumptions, the calculations well agree with the experimental results. The first assumption supposes a variable competitive adsorption/desorption kinetics on the catalytic surface, and the other one assumes a transition of the iron catalyst from a solid to a state at 973 K. It is thus inferred that the rate of the steady-state growth is controlled by the competitive adsorption of hydrocarbon with hydrogen on the catalytic surface, the first step of the process. By contrast, the transient step displays abrupt changes that are governed by a partial melting of the iron-based nanoparticles above 973 K. In the solid state below 973K, carbon diffusion is controlled by the surface diffusion. Above 973K, the carbon diffusion is enhanced by several orders of magnitude corresponding to liquidlike diffusion. At high temperature, the suppression of the transient state is accounted for by an enhanced hydrocarbon desorption. A nucleation step involving preliminary carbon saturation of the catalytic nanoparticle as well as carbon surface coverage by the nucleation precursor is observed at low temperatures. From the simulations, it is proposed that a carbyne chain circumventing the catalytic nanoparticle may provide the nucleation precursor. A partial or collective poisoning of the catalyst interferes at high temperatures with this general scheme." @default.
- W2002071708 created "2016-06-24" @default.
- W2002071708 creator A5011167912 @default.
- W2002071708 creator A5025251896 @default.
- W2002071708 creator A5031458813 @default.
- W2002071708 creator A5037019244 @default.
- W2002071708 creator A5042627991 @default.
- W2002071708 date "2009-07-22" @default.
- W2002071708 modified "2023-10-18" @default.
- W2002071708 title "In Situ Monitoring the Thermal Dependence of the Growth of Carbon Nanotubes by Chemical Vapor Deposition Investigated by Tapered Element Oscillating Microbalance" @default.
- W2002071708 cites W1529457220 @default.
- W2002071708 cites W1622468530 @default.
- W2002071708 cites W1963520718 @default.
- W2002071708 cites W1963551333 @default.
- W2002071708 cites W1964362804 @default.
- W2002071708 cites W1964595413 @default.
- W2002071708 cites W1967060397 @default.
- W2002071708 cites W1967712842 @default.
- W2002071708 cites W1968096904 @default.
- W2002071708 cites W1973823625 @default.
- W2002071708 cites W1974088438 @default.
- W2002071708 cites W1974953255 @default.
- W2002071708 cites W1975649182 @default.
- W2002071708 cites W1984644799 @default.
- W2002071708 cites W1986520509 @default.
- W2002071708 cites W1987368801 @default.
- W2002071708 cites W1988348604 @default.
- W2002071708 cites W1995535350 @default.
- W2002071708 cites W1997071461 @default.
- W2002071708 cites W2001372565 @default.
- W2002071708 cites W2007018190 @default.
- W2002071708 cites W2007947579 @default.
- W2002071708 cites W2013335322 @default.
- W2002071708 cites W2014811306 @default.
- W2002071708 cites W2017712799 @default.
- W2002071708 cites W2018689078 @default.
- W2002071708 cites W2018833389 @default.
- W2002071708 cites W2019924935 @default.
- W2002071708 cites W2023579904 @default.
- W2002071708 cites W2026956334 @default.
- W2002071708 cites W2028651887 @default.
- W2002071708 cites W2030741087 @default.
- W2002071708 cites W2037567065 @default.
- W2002071708 cites W2042086310 @default.
- W2002071708 cites W2047204152 @default.
- W2002071708 cites W2048677711 @default.
- W2002071708 cites W2055368150 @default.
- W2002071708 cites W2055801205 @default.
- W2002071708 cites W2058215703 @default.
- W2002071708 cites W2059236026 @default.
- W2002071708 cites W2062683244 @default.
- W2002071708 cites W2066713223 @default.
- W2002071708 cites W2068238280 @default.
- W2002071708 cites W2069915525 @default.
- W2002071708 cites W2070993736 @default.
- W2002071708 cites W2072066675 @default.
- W2002071708 cites W2072569744 @default.
- W2002071708 cites W2078617995 @default.
- W2002071708 cites W2079662721 @default.
- W2002071708 cites W2080456525 @default.
- W2002071708 cites W2083552525 @default.
- W2002071708 cites W2086057517 @default.
- W2002071708 cites W2087690684 @default.
- W2002071708 cites W2090060516 @default.
- W2002071708 cites W2091196910 @default.
- W2002071708 cites W2091254705 @default.
- W2002071708 cites W2092720613 @default.
- W2002071708 cites W2093591975 @default.
- W2002071708 cites W2094076040 @default.
- W2002071708 cites W2111519025 @default.
- W2002071708 cites W2115465710 @default.
- W2002071708 cites W2116748645 @default.
- W2002071708 cites W2119741652 @default.
- W2002071708 cites W2144704038 @default.
- W2002071708 cites W2146250692 @default.
- W2002071708 cites W2161755849 @default.
- W2002071708 cites W2165468985 @default.
- W2002071708 cites W2165485835 @default.
- W2002071708 cites W2324366354 @default.
- W2002071708 cites W256874078 @default.
- W2002071708 cites W4247973484 @default.
- W2002071708 doi "https://doi.org/10.1021/jp8111952" @default.
- W2002071708 hasPublicationYear "2009" @default.
- W2002071708 type Work @default.
- W2002071708 sameAs 2002071708 @default.
- W2002071708 citedByCount "5" @default.
- W2002071708 countsByYear W20020717082012 @default.
- W2002071708 countsByYear W20020717082016 @default.
- W2002071708 crossrefType "journal-article" @default.
- W2002071708 hasAuthorship W2002071708A5011167912 @default.
- W2002071708 hasAuthorship W2002071708A5025251896 @default.
- W2002071708 hasAuthorship W2002071708A5031458813 @default.
- W2002071708 hasAuthorship W2002071708A5037019244 @default.
- W2002071708 hasAuthorship W2002071708A5042627991 @default.
- W2002071708 hasConcept C121332964 @default.
- W2002071708 hasConcept C127413603 @default.
- W2002071708 hasConcept C151730666 @default.
- W2002071708 hasConcept C171250308 @default.