Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002100043> ?p ?o ?g. }
- W2002100043 endingPage "6186" @default.
- W2002100043 startingPage "6162" @default.
- W2002100043 abstract "Abstract In order to reconstruct paleo-environmental conditions for the saline playa lakes of the Rio Grande Rift, we investigated sediment sulfate sources using sulfur isotope compositions of dissolved SO 4 2 - ions in modern surface water, groundwater, and SO 4 2 - precipitated in the form of gypsum sediments deposited during the Pleistocene and Holocene in the Tularosa and Estancia Basins. The major sulfate sources are Lower and Middle Permian marine evaporites (δ34S of 10.9–14.4‰), but the diverse physiography of the Tularosa Basin led to a complex drainage system which contributed sulfates from various sources depending on the climate at the time of sedimentation. As inferred from sulfur isotope mass balance constraints, weathering of sulfides of magmatic/hydrothermal and sedimentary origin associated with climate oscillations during Last Glacial Maximum contributed about 35–50% of the sulfates and led to deposition of gypsum with δ34S values of −1.2‰ to 2.2‰ which are substantially lower than Permian evaporates. In the Estancia Basin, microbial sulfate reduction appears to overprint sulfur isotopic signatures that might elucidate past groundwater flows. A Rayleigh distillation model indicates that about 3–18% of sulfates from an inorganic groundwater pool (δ34S of 12.6–13.8‰) have been metabolized by bacteria and preserved as partially to fully reduced sulfur-bearing minerals species (elemental sulfur, monosulfides, disulfides) with distinctly negative δ34S values (−42.3‰ to −20.3‰) compared to co-existing gypsum (−3.8‰ to 22.4‰). For the Tularosa Basin microbial sulfate reduction had negligible effect on δ34S value of the gypsiferous sediments most likely because of higher annual temperatures (15–33 °C) and lower organic carbon content (median 0.09%) in those sediments leading to more efficient oxidation of H2S and/or smaller rates of sulfate reduction compared to the saline playas of the Estancia Basin (5–28 °C; median 0.46% of organic carbon). The White Sands region of the Tularosa Basin is frequently posited as a hydrothermal analogue for Mars. High temperatures of groundwater (33.3 °C) and high δ18O(H2O) values (1.1‰) in White Sands, however, are controlled predominantly by seasonal evaporation rather than the modern influx of hydrothermal fluids. Nevertheless, it is possible that some of the geochemical processes in White Sands, such as sulfide weathering during climate oscillations and upwelling of highly mineralized waters, might be considered as valid terrestrial analogues for the sulfate cycle in places such as Meridiani Planum on Mars." @default.
- W2002100043 created "2016-06-24" @default.
- W2002100043 creator A5010072468 @default.
- W2002100043 creator A5015938684 @default.
- W2002100043 creator A5023512946 @default.
- W2002100043 creator A5064490426 @default.
- W2002100043 date "2009-10-01" @default.
- W2002100043 modified "2023-10-10" @default.
- W2002100043 title "Sulfur isotope signatures in gypsiferous sediments of the Estancia and Tularosa Basins as indicators of sulfate sources, hydrological processes, and microbial activity" @default.
- W2002100043 cites W1572959391 @default.
- W2002100043 cites W1574418603 @default.
- W2002100043 cites W1876406782 @default.
- W2002100043 cites W1955520095 @default.
- W2002100043 cites W1975073964 @default.
- W2002100043 cites W1976011994 @default.
- W2002100043 cites W1981611883 @default.
- W2002100043 cites W1986549139 @default.
- W2002100043 cites W1987151096 @default.
- W2002100043 cites W1989114755 @default.
- W2002100043 cites W1994787968 @default.
- W2002100043 cites W1995101638 @default.
- W2002100043 cites W2003126786 @default.
- W2002100043 cites W2013074073 @default.
- W2002100043 cites W2014891531 @default.
- W2002100043 cites W2016837919 @default.
- W2002100043 cites W2019135021 @default.
- W2002100043 cites W2021927301 @default.
- W2002100043 cites W2022859115 @default.
- W2002100043 cites W2022980556 @default.
- W2002100043 cites W2026705834 @default.
- W2002100043 cites W2028330939 @default.
- W2002100043 cites W2030634559 @default.
- W2002100043 cites W2042830459 @default.
- W2002100043 cites W2044735336 @default.
- W2002100043 cites W2046675219 @default.
- W2002100043 cites W2046998156 @default.
- W2002100043 cites W2053490063 @default.
- W2002100043 cites W2055545854 @default.
- W2002100043 cites W2055899902 @default.
- W2002100043 cites W2056559636 @default.
- W2002100043 cites W2060617303 @default.
- W2002100043 cites W2062147037 @default.
- W2002100043 cites W2064799463 @default.
- W2002100043 cites W2066699821 @default.
- W2002100043 cites W2070529447 @default.
- W2002100043 cites W2071241560 @default.
- W2002100043 cites W2071402402 @default.
- W2002100043 cites W2073365548 @default.
- W2002100043 cites W2077384023 @default.
- W2002100043 cites W2079661040 @default.
- W2002100043 cites W2081305730 @default.
- W2002100043 cites W2090259106 @default.
- W2002100043 cites W2091537757 @default.
- W2002100043 cites W2094363364 @default.
- W2002100043 cites W2099507384 @default.
- W2002100043 cites W2103137479 @default.
- W2002100043 cites W2103744312 @default.
- W2002100043 cites W2107225219 @default.
- W2002100043 cites W2112478326 @default.
- W2002100043 cites W2116454031 @default.
- W2002100043 cites W2121116596 @default.
- W2002100043 cites W2125488793 @default.
- W2002100043 cites W2142067912 @default.
- W2002100043 cites W2155118102 @default.
- W2002100043 cites W2162618768 @default.
- W2002100043 cites W2172843326 @default.
- W2002100043 cites W2647952532 @default.
- W2002100043 cites W4242786968 @default.
- W2002100043 doi "https://doi.org/10.1016/j.gca.2009.07.009" @default.
- W2002100043 hasPublicationYear "2009" @default.
- W2002100043 type Work @default.
- W2002100043 sameAs 2002100043 @default.
- W2002100043 citedByCount "27" @default.
- W2002100043 countsByYear W20021000432012 @default.
- W2002100043 countsByYear W20021000432013 @default.
- W2002100043 countsByYear W20021000432016 @default.
- W2002100043 countsByYear W20021000432017 @default.
- W2002100043 countsByYear W20021000432018 @default.
- W2002100043 countsByYear W20021000432020 @default.
- W2002100043 countsByYear W20021000432021 @default.
- W2002100043 countsByYear W20021000432022 @default.
- W2002100043 countsByYear W20021000432023 @default.
- W2002100043 crossrefType "journal-article" @default.
- W2002100043 hasAuthorship W2002100043A5010072468 @default.
- W2002100043 hasAuthorship W2002100043A5015938684 @default.
- W2002100043 hasAuthorship W2002100043A5023512946 @default.
- W2002100043 hasAuthorship W2002100043A5064490426 @default.
- W2002100043 hasConcept C107872376 @default.
- W2002100043 hasConcept C127313418 @default.
- W2002100043 hasConcept C151730666 @default.
- W2002100043 hasConcept C156622251 @default.
- W2002100043 hasConcept C17409809 @default.
- W2002100043 hasConcept C178790620 @default.
- W2002100043 hasConcept C185592680 @default.
- W2002100043 hasConcept C2776062231 @default.
- W2002100043 hasConcept C2776152364 @default.
- W2002100043 hasConcept C2778343803 @default.
- W2002100043 hasConcept C2779229104 @default.