Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002102681> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2002102681 endingPage "40" @default.
- W2002102681 startingPage "23" @default.
- W2002102681 abstract "In this paper we consider representation of numbers in an irrational basis β > 1. We study the arithmetic operations on β-expansions and provide bounds on the number of fractional digits arising in addition and multiplication, L⊕(β) and L (β), respectively. We determine these bounds for irrational numbers β which are algebraic with at least one conjugate in modulus smaller than 1. In the case of a Pisot number β we derive the relation between β-integers and cut-and-project sequences and then use the properties of cut-and-project sequences to estimate L⊕(β) and L (β). We generalize the results known for quadratic Pisot units to other quadratic Pisot numbers. 1 Beta-expansions Let β be a real number strictly greater than 1. A real number x ≥ 0 can be represented using a sequence (xi)k≥i>−∞, xi ∈ Z, 0 ≤ xi 1. We denote L⊕(β) := min{L ∈ N0 | ∀x, y ∈ Zβ , x+ y ∈ Fin(β) =⇒ fpβ(x+ y) ≤ L} , L (β) := min{L ∈ N0 | ∀x, y ∈ Zβ , xy ∈ Fin(β) =⇒ fpβ(xy) ≤ L} . Minimum of an empty set is defined to be +∞. The aim of this paper is to give some quantitative results for L⊕(β) and L (β). Let us mention some of the known results. Frougny and Solomyak in [4] showed that L⊕(β) is finite if β is a Pisot number. A Pisot number β is an algebraic integer such that β > 1 and all its algebraic conjugates are in modulus smaller than 1. Let us mention that according to the knowledge of authors no example is known of such β that L⊕(β) or L (β) is infinite. Results for special case of quadratic Pisot units are found in [3]. The authors gave exact values for L⊕(β) and L (β), if β > 1 is a root of equation x = mx− 1, m ∈ N, m ≥ 3 or equation x = mx+ 1, m ∈ N. In the first case L⊕(β) = L (β) = 1; in the second case L⊕(β) = L (β) = 2. In this article we provide estimates on L⊕(β), L (β) for those algebraic numbers β > 1 that have at least one of the conjugates in modulus smaller than 1. Other results are valid for Pisot numbers β. The last part of the paper is devoted to quadratic Pisot numbers. We reproduce the results of [3] as a special case. 2 Beta-integers and cut-and-project sequences The Renyi development of unity plays an important role in the description of properties of sets Zβ and Fin(β). For its definition we introduce the transformation Tβ(x) := {βx}, for x ∈ [0, 1]. The Renyi development of unity is defined as d(1, β) := t1t2 . . . ti . . . , where ti := [βT i−1 β (1)] . Parry in [6] has showed that x = xkxk−1 . . . x1x0 • x−1 . . . x−p is a β-expansion if and only if xixi−1 . . . x−p is lexicographically smaller than t1t2 . . . ti . . . for every −p ≤ i ≤ k. Fin(β) and Zβ are centrally symmetric sets. While Fin(β) is dense in R, Zβ has no accummulation points. Distances between consecutive points in Zβ take values {0 • titi+1 . . . | i ∈ N}. It is obvious that if d(1, β) is eventually periodic, then Zβ has a finite number of distances between consecutive points. Numbers β with this property are called beta-numbers. Some results and conjectures on beta-numbers are given in [2, 9]; description of beta-numbers is provided in [8]. Note that every Pisot number β is a beta-number. The set Zβ of β-integers forms a ring only in the case that β is a rational integer, β > 1. If β is an algebraic integer of order q ≥ 2, then Zβ can be naturally embedded into the ring Z[β] defined as Z[β] := {n0 + n1β + · · ·+ nq−1β | ni ∈ Z} ." @default.
- W2002102681 created "2016-06-24" @default.
- W2002102681 creator A5002690365 @default.
- W2002102681 creator A5018735718 @default.
- W2002102681 creator A5053945124 @default.
- W2002102681 date "2004-01-01" @default.
- W2002102681 modified "2023-10-16" @default.
- W2002102681 title "Arithmetics of beta-expansions" @default.
- W2002102681 cites W1984632466 @default.
- W2002102681 cites W2075595154 @default.
- W2002102681 cites W2076789781 @default.
- W2002102681 cites W2078637583 @default.
- W2002102681 cites W2089164015 @default.
- W2002102681 cites W2160949125 @default.
- W2002102681 cites W56268668 @default.
- W2002102681 cites W75559894 @default.
- W2002102681 doi "https://doi.org/10.4064/aa112-1-2" @default.
- W2002102681 hasPublicationYear "2004" @default.
- W2002102681 type Work @default.
- W2002102681 sameAs 2002102681 @default.
- W2002102681 citedByCount "14" @default.
- W2002102681 countsByYear W20021026812017 @default.
- W2002102681 countsByYear W20021026812018 @default.
- W2002102681 crossrefType "journal-article" @default.
- W2002102681 hasAuthorship W2002102681A5002690365 @default.
- W2002102681 hasAuthorship W2002102681A5018735718 @default.
- W2002102681 hasAuthorship W2002102681A5053945124 @default.
- W2002102681 hasBestOaLocation W20021026811 @default.
- W2002102681 hasConcept C199360897 @default.
- W2002102681 hasConcept C2776174256 @default.
- W2002102681 hasConcept C33923547 @default.
- W2002102681 hasConcept C41008148 @default.
- W2002102681 hasConcept C94375191 @default.
- W2002102681 hasConceptScore W2002102681C199360897 @default.
- W2002102681 hasConceptScore W2002102681C2776174256 @default.
- W2002102681 hasConceptScore W2002102681C33923547 @default.
- W2002102681 hasConceptScore W2002102681C41008148 @default.
- W2002102681 hasConceptScore W2002102681C94375191 @default.
- W2002102681 hasIssue "1" @default.
- W2002102681 hasLocation W20021026811 @default.
- W2002102681 hasLocation W20021026812 @default.
- W2002102681 hasOpenAccess W2002102681 @default.
- W2002102681 hasPrimaryLocation W20021026811 @default.
- W2002102681 hasRelatedWork W1834022839 @default.
- W2002102681 hasRelatedWork W2047454787 @default.
- W2002102681 hasRelatedWork W2135173043 @default.
- W2002102681 hasRelatedWork W2317743108 @default.
- W2002102681 hasRelatedWork W2335699373 @default.
- W2002102681 hasRelatedWork W241866648 @default.
- W2002102681 hasRelatedWork W2600284381 @default.
- W2002102681 hasRelatedWork W3123593688 @default.
- W2002102681 hasRelatedWork W4236023598 @default.
- W2002102681 hasRelatedWork W4253321761 @default.
- W2002102681 hasVolume "112" @default.
- W2002102681 isParatext "false" @default.
- W2002102681 isRetracted "false" @default.
- W2002102681 magId "2002102681" @default.
- W2002102681 workType "article" @default.