Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002111922> ?p ?o ?g. }
- W2002111922 endingPage "55" @default.
- W2002111922 startingPage "48" @default.
- W2002111922 abstract "ConspectusNanostructures based on molybdenum disulfide (MoS2) are by far the most common and well-studied systems among two-dimensional (2D) semiconducting materials. Although still being characterized as a “promising material”, catalytic activity of MoS2 nanostructures has been found, and applications in lubrication processes are pursued. Because exfoliation techniques have improved over the past years, monolayer MoS2 is easily at hand; thus, experimental studies on its electronic properties and applicability are in scientific focus, and some MoS2-based electronic devices have been reported already. Additionally, the improvement of atomic force microscopy led to nanoindentation experiments, in which the exceptional mechanical properties of MoS2 could be confirmed. In this Account, we review recent results from density-functional based calculations on several MoS2-based nanostructures; we have chosen to follow several experimental routes focusing on different nanostructures and their specific properties.MoS2-based triangular nanoflakes are systems that are experimentally well described and studied with a special focus on their optical absorption. The interpretation of our calculations fits well to the experimental picture: the absorption peaks in the visible light range show a quantum-confinement effect; they originate from excitations into the edge states. Additionally, delocalized metallic-like states are present close to the Fermi level, which do not contribute to photoabsorption in the visible range.Additionally, nanoindentation experiments have been simulated to obtain mechanical properties of the MoS2 material and to study the influence of deformation on the system’s electronics. In these molecular-dynamics simulations, a tip penetrates a MoS2 monolayer, and the obtained Young’s modulus and breaking stress agree very well with experimentally obtained values. Whereas the structural properties, such as bond lengths and layer contraction, vary locally differently upon indentation, the electronic structure in terms of the density of states, the gap between occupied and unoccupied states, or the quantum transport change only slightly. The robustness of the material with respect to electronic and mechanical properties makes monolayer MoS2 special. However, it is important to note that this robustness refers to a local disturbance through deformation and still seems to be dependent on the defect concentration.Finally, we present a comparison of the thermodynamic stabilities of different MoS2-based nanostructures with a focus on nanoflakes, fullerene-like nanooctahedra, and smaller Chevrel-type and non-Chevrel-type clusters (nanowires). All studied systems are stable in comparison to MoS2, Mo bulk, and the S8 crown, but only the studied nanoflakes and nanowires show specific stoichiometries, either sulfur-rich or sulfur-poor, whereas the nanooctahedra may adopt both. From the thermodynamic stabilities, it should be possible to deliberately choose specific nanostructures by thoughtful choices of the synthesis conditions.In conclusion, we present in this Account exceptional properties of MoS2-based nanostructures studied by means of density-functional theory. The focus lies on optical absorption in the visible range observed in triangular nanoflakes, which originate in the system’s edge states, the robustness of monolayer MoS2 with respect to punctual loads regarding both mechanical and electronic properties, and the thermodynamic stability of most studied MoS2-based nanosystems revealing a correlation between composition and preferred morphology, particularly for 2D systems." @default.
- W2002111922 created "2016-06-24" @default.
- W2002111922 creator A5005632579 @default.
- W2002111922 creator A5024372988 @default.
- W2002111922 creator A5035422889 @default.
- W2002111922 creator A5040662463 @default.
- W2002111922 creator A5077824150 @default.
- W2002111922 date "2014-12-09" @default.
- W2002111922 modified "2023-10-02" @default.
- W2002111922 title "Optics, Mechanics, and Energetics of Two-Dimensional MoS<sub>2</sub> Nanostructures from a Theoretical Perspective" @default.
- W2002111922 cites W105144590 @default.
- W2002111922 cites W1626643025 @default.
- W2002111922 cites W1965718520 @default.
- W2002111922 cites W1969843501 @default.
- W2002111922 cites W1974115717 @default.
- W2002111922 cites W1975192769 @default.
- W2002111922 cites W1982620320 @default.
- W2002111922 cites W1985700266 @default.
- W2002111922 cites W1986387450 @default.
- W2002111922 cites W1987253619 @default.
- W2002111922 cites W1987395172 @default.
- W2002111922 cites W1994712730 @default.
- W2002111922 cites W1996919450 @default.
- W2002111922 cites W1999088588 @default.
- W2002111922 cites W2005568551 @default.
- W2002111922 cites W2010971702 @default.
- W2002111922 cites W201187410 @default.
- W2002111922 cites W2017871657 @default.
- W2002111922 cites W2021928592 @default.
- W2002111922 cites W2021994802 @default.
- W2002111922 cites W2022565432 @default.
- W2002111922 cites W2022997694 @default.
- W2002111922 cites W2027688389 @default.
- W2002111922 cites W2030976617 @default.
- W2002111922 cites W2031920478 @default.
- W2002111922 cites W2032123463 @default.
- W2002111922 cites W2034050716 @default.
- W2002111922 cites W2036617608 @default.
- W2002111922 cites W2038424733 @default.
- W2002111922 cites W2043318786 @default.
- W2002111922 cites W2043555321 @default.
- W2002111922 cites W2054837043 @default.
- W2002111922 cites W2057936764 @default.
- W2002111922 cites W2060410316 @default.
- W2002111922 cites W2061888918 @default.
- W2002111922 cites W2069261068 @default.
- W2002111922 cites W2078371152 @default.
- W2002111922 cites W2089990621 @default.
- W2002111922 cites W2091130390 @default.
- W2002111922 cites W2092044679 @default.
- W2002111922 cites W2092077040 @default.
- W2002111922 cites W2092588971 @default.
- W2002111922 cites W2093065511 @default.
- W2002111922 cites W2094516606 @default.
- W2002111922 cites W2096751327 @default.
- W2002111922 cites W2100431558 @default.
- W2002111922 cites W2104029981 @default.
- W2002111922 cites W2105790381 @default.
- W2002111922 cites W2109954752 @default.
- W2002111922 cites W2115678990 @default.
- W2002111922 cites W2115786064 @default.
- W2002111922 cites W2116161488 @default.
- W2002111922 cites W2134233006 @default.
- W2002111922 cites W2152767344 @default.
- W2002111922 cites W2158170676 @default.
- W2002111922 cites W2163433444 @default.
- W2002111922 cites W2167952963 @default.
- W2002111922 cites W2230728100 @default.
- W2002111922 cites W2320774444 @default.
- W2002111922 cites W2326836586 @default.
- W2002111922 cites W2338028863 @default.
- W2002111922 cites W2501886121 @default.
- W2002111922 cites W2994141084 @default.
- W2002111922 cites W70645036 @default.
- W2002111922 doi "https://doi.org/10.1021/ar500318p" @default.
- W2002111922 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25489859" @default.
- W2002111922 hasPublicationYear "2014" @default.
- W2002111922 type Work @default.
- W2002111922 sameAs 2002111922 @default.
- W2002111922 citedByCount "54" @default.
- W2002111922 countsByYear W20021119222015 @default.
- W2002111922 countsByYear W20021119222016 @default.
- W2002111922 countsByYear W20021119222017 @default.
- W2002111922 countsByYear W20021119222018 @default.
- W2002111922 countsByYear W20021119222019 @default.
- W2002111922 countsByYear W20021119222021 @default.
- W2002111922 countsByYear W20021119222022 @default.
- W2002111922 countsByYear W20021119222023 @default.
- W2002111922 crossrefType "journal-article" @default.
- W2002111922 hasAuthorship W2002111922A5005632579 @default.
- W2002111922 hasAuthorship W2002111922A5024372988 @default.
- W2002111922 hasAuthorship W2002111922A5035422889 @default.
- W2002111922 hasAuthorship W2002111922A5040662463 @default.
- W2002111922 hasAuthorship W2002111922A5077824150 @default.
- W2002111922 hasConcept C121332964 @default.
- W2002111922 hasConcept C147120987 @default.
- W2002111922 hasConcept C147597530 @default.
- W2002111922 hasConcept C152365726 @default.