Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002117801> ?p ?o ?g. }
- W2002117801 endingPage "20063" @default.
- W2002117801 startingPage "20059" @default.
- W2002117801 abstract "50 years ago Isaacs and Lindenmann (1Isaacs A. Lindenmann J. Proc. R. Soc. Lond. B. Biol. Sci. 1957; 147: 258-267Crossref PubMed Google Scholar) first described interferons (IFNs) 2The abbreviations used are: IFN, interferon; JAK, Janus kinase; STAT, signal transducers and activators of transcription; JH, JAK homology; γC, γ-chain; SH2, Src homology 2; IL, interleukin; IFNAR, IFN-α receptor chain; ISGF, IFN-stimulated gene factor; ISRE, IFN-stimulated response element; TAD, transcriptional activation domain; GAS, γ-IFN-activated site; aa, amino acid(s); GM-CSF, granulocyte/macrophage-colony-stimulating factor; SOCS, suppressors of cytokine signaling; CBP, CREB-binding factor; pol II, polymerase II; HDAC, histone deacetylase; LIF, leukemia inhibitory factor. as founding members of the cytokine family. Over the next 25 years, these and several other four-helix bundle cytokines were characterized. The subsequent 25 years witnessed an exponential growth in number of four-helix bundle cytokines and their corresponding receptors. The early availability of recombinant IFNs afforded an opportunity to investigate how cytokines induce gene expression, culminating in the identification of the JAK-STAT signaling paradigm (see Fig. 1). Subsequent studies identified 7 STATs and 4 JAKs, providing important insight into how the ∼50 members of the four-helix bundle cytokine family transduce their potent biological responses. This review will briefly summarize this signaling paradigm (reviewed in Refs. 2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 3Levy D.E. Darnell Jr., J.E. Nat. Rev. Mol. Cell Biol. 2002; 3: 651-662Crossref PubMed Scopus (2501) Google Scholar, 4Decker T. Muller M. Stockinger S. Nat. Rev. Immunol. 2005; 5: 675-687Crossref PubMed Scopus (381) Google Scholar, 5O'Shea J.J. Gadina M. Schreiber R.D. Cell. 2002; 109: S121-S131Abstract Full Text Full Text PDF PubMed Scopus (947) Google Scholar) and then focus on STAT-dependent transcription. Members of the JAK family, Jak1, Jak2, Jak3, and Tyk2, were initially identified as orphan tyrosine kinases (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 3Levy D.E. Darnell Jr., J.E. Nat. Rev. Mol. Cell Biol. 2002; 3: 651-662Crossref PubMed Scopus (2501) Google Scholar, 5O'Shea J.J. Gadina M. Schreiber R.D. Cell. 2002; 109: S121-S131Abstract Full Text Full Text PDF PubMed Scopus (947) Google Scholar, 6Firmbach-Kraft I. Byers M. Shows T. Dalla-Favera R. Krolewski J.J. Oncogene. 1990; 5: 1329-1336PubMed Google Scholar, 7Wilks A.F. Proc. Natl. Acad. Sci. U. S. A. 1989; 86: 1603-1607Crossref PubMed Scopus (365) Google Scholar). All exhibited broad patterns of expression, except Jak3, in which expression was restricted to leukocytes. Genetic studies linking Tyk2 to the biological response to type I IFNs (IFN-I; also IFN-α/β) inspired studies associating these kinases with cytokine signaling (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 5O'Shea J.J. Gadina M. Schreiber R.D. Cell. 2002; 109: S121-S131Abstract Full Text Full Text PDF PubMed Scopus (947) Google Scholar, 8Velazquez L. Fellous M. Stark G.R. Pellegrini S. Cell. 1992; 70: 313-322Abstract Full Text PDF PubMed Scopus (709) Google Scholar). Specifically, these studies determined that ligand binding stimulated the rapid activation of receptor-associated JAKs, initiating JAK-STAT signaling (see Fig. 1). JAKs range in size from 120 to 140 kDa and feature seven conserved JAK homology (JH) domains. The two carboxyl-terminal JH regions represent the kinase (JH1/Ki) and pseudo kinase (JH2/ΨKi) domains (see Fig. 2). As with other tyrosine kinases, activation is driven by phosphorylation of critical tyrosines in the “inactivation loop.” The four amino-terminal JH domains (JH7–5 and half of JH4) constitute a FERM (four point one, ezrin, radixin, moesin) domain that mediates association with receptors. Specifically, JAKs associate with the proline-rich, membrane-proximal box1/box2 domain on cytokine receptors. An SH2-related domain (SH2; JH3 and half of JH4), of unknown function, lies between the pseudokinase and FERM domains. Tyk2—Tyk2 associates with receptors for IFN-I, IL-6, IL-10 and IL-12/23 cytokine families (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 9Watford W.T. O'Shea J.J. Immunity. 2006; 25: 695-697Abstract Full Text Full Text PDF PubMed Scopus (41) Google Scholar). In Tyk2-deficient humans, the combined defects in the response to IFN-I, IL-6, IL-10, IL-12, and IL-23 are associated with enhanced allergic and impaired antimicrobial responses (9Watford W.T. O'Shea J.J. Immunity. 2006; 25: 695-697Abstract Full Text Full Text PDF PubMed Scopus (41) Google Scholar). By comparison, Tyk2 knock-out mice exhibit a less severe defect, indicating that murine Tyk2 is more of a response amplifier and not absolutely required (9Watford W.T. O'Shea J.J. Immunity. 2006; 25: 695-697Abstract Full Text Full Text PDF PubMed Scopus (41) Google Scholar). Like humans, however, Tyk2-deficient mice exhibit a proclivity toward type 2 immune response (9Watford W.T. O'Shea J.J. Immunity. 2006; 25: 695-697Abstract Full Text Full Text PDF PubMed Scopus (41) Google Scholar). In addition, Tyk2 contributes to the lethal effects of endotoxin through an ill defined and largely Stat1-independent pathway (10Karaghiosoff M. Steinborn R. Kovarik P. Kriegshauser G. Baccarini M. Donabauer B. Reichart U. Kolbe T. Bogdan C. Leanderson T. Levy D. Decker T. Muller M. Nat. Immunol. 2003; 4: 471-477Crossref PubMed Scopus (307) Google Scholar). Jak1—Initially identified in a screen for novel kinases (7Wilks A.F. Proc. Natl. Acad. Sci. U. S. A. 1989; 86: 1603-1607Crossref PubMed Scopus (365) Google Scholar), biochemical and genetic studies have revealed a functional and physical association with the type I (IFN-α/β), type II (IFN-γ), IL-2, and IL-6 receptors (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 3Levy D.E. Darnell Jr., J.E. Nat. Rev. Mol. Cell Biol. 2002; 3: 651-662Crossref PubMed Scopus (2501) Google Scholar, 5O'Shea J.J. Gadina M. Schreiber R.D. Cell. 2002; 109: S121-S131Abstract Full Text Full Text PDF PubMed Scopus (947) Google Scholar). Evidence that the two IFN-α receptor chains, IFNAR1 and IFNAR2, associated with Tyk2 and Jak1, respectively, led to the notion that JAKs activate each other through transphosphorylation. Importantly, Jak1 knockout mice die perinatally, reflecting a defect in LIF (an IL-6 family member) receptor signaling (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 5O'Shea J.J. Gadina M. Schreiber R.D. Cell. 2002; 109: S121-S131Abstract Full Text Full Text PDF PubMed Scopus (947) Google Scholar). Characterization of Jak1 knock-out tissues, however, confirmed a critical role for this kinase in the response to IFN, IL-10, IL-2/IL-4 and IL-6 cytokine families. Jak2—Initial biochemical studies implicated Jak2 in the response to receptors from the single-chain (i.e. Epo-R, GH-R, Prl-R) and IL-3 (IL-3R, IL-5R, and GM-CSFR) cytokine families, as well as the IFN-γ receptor (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 3Levy D.E. Darnell Jr., J.E. Nat. Rev. Mol. Cell Biol. 2002; 3: 651-662Crossref PubMed Scopus (2501) Google Scholar, 5O'Shea J.J. Gadina M. Schreiber R.D. Cell. 2002; 109: S121-S131Abstract Full Text Full Text PDF PubMed Scopus (947) Google Scholar). Consistent with a critical role in definitive erythropoiesis, Jak2 knock-out mice died of anemia at E12.5 (5O'Shea J.J. Gadina M. Schreiber R.D. Cell. 2002; 109: S121-S131Abstract Full Text Full Text PDF PubMed Scopus (947) Google Scholar). Analysis of Jak2–/– tissues confirmed an important role in directing the responses to members of the single-chain, IL-3, and IFN-γ receptor families. Intriguingly, humans with Jak2 mutations exhibit myeloproliferative disorders (11Delhommeau F. Pisani D.F. James C. Casadevall N. Constantinescu S. Vainchenker W. Cell Mol. Life Sci. 2006; 63: 2939-2953Crossref PubMed Scopus (61) Google Scholar). Finally, elegant biochemical studies with chimeric erythropoietin receptors provide compelling evidence that ligand binding drives two receptor associated Jak2s into close proximity, enabling them to activate each other by transphosphorylation (12Remy I. Wilson I.A. Michnick S.W. Science. 1999; 283: 990-993Crossref PubMed Scopus (538) Google Scholar). Jak3—Leukocyte-specific Jak3 exclusively associates with the IL-2 receptor γ-chain (γC). This chain also serves as a component for the receptors of several lymphotrophic cytokines, including IL-4, IL-7, IL-9, IL-15, and IL-21. Underscoring the critical roles that γC and Jak3 play in lymphoid activity, mutations in either molecule are associated with severe combined immunodeficiency disease (5O'Shea J.J. Gadina M. Schreiber R.D. Cell. 2002; 109: S121-S131Abstract Full Text Full Text PDF PubMed Scopus (947) Google Scholar). Intriguingly, Jak3 knock-out mice develop a similar, but less severe, immunodeficiency syndrome (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 3Levy D.E. Darnell Jr., J.E. Nat. Rev. Mol. Cell Biol. 2002; 3: 651-662Crossref PubMed Scopus (2501) Google Scholar, 5O'Shea J.J. Gadina M. Schreiber R.D. Cell. 2002; 109: S121-S131Abstract Full Text Full Text PDF PubMed Scopus (947) Google Scholar). Because of the unique role Jak3 plays in regulating lymphocytes, it has become an important pharmaceutical target. The seven members of the mammalian STAT family (STATs 1, 2, 3, 4, 5a, 5b, and 6) range in size from 750 to 900 amino acids and feature several conserved domains, notably including an SH2 domain (see Fig. 2). In resting cells, STATs reside largely in the cytoplasm as inactive homodimers (13Mertens C. Zhong M. Krishnaraj R. Zou W. Chen X. Darnell Jr., J.E. Genes Dev. 2006; 20: 3372-3381Crossref PubMed Scopus (110) Google Scholar). However, upon ligand binding, receptor-associated JAKs become activated (see above), leading to the phosphorylation of specific receptor tyrosine residues (see Fig. 1). These receptor phosphotyrosyl residues direct the SH2-dependent recruitment of specific STATs, which in turn become JAK substrates. Activated STATs are released from the receptor as they reorient into an antiparallel dimer, where the SH2 domain of one STAT binds the phosphotyrosine of the other STAT. Activated STAT dimers translocate to the nucleus and bind to specific enhancer elements. STAT homodimers bind to members of the GAS family of enhancers (a palindrome, TTTCCNGGAAA; Fig. 1). In contrast, IFN-Is promote the formation of Stat1-Stat2 heterodimers, which associate with IRF-9 (IFN regulatory factor) to form ISGF-3 and bind to the ISRE enhancer family (a direct repeat, AGTTTN3TTTCC; Fig. 1). STAT Structure—Biochemical, genetic, and structural studies have identified seven conserved STAT domains, including the amino-terminal (NH2), coiled-coil, DNA-binding (DBD), linker (Lk), SH2, tyrosine activation (Y), and transcriptional activation domains (TAD) (Fig. 2; Ref. 14Becker S. Groner B. Müller C.W. Nature. 1998; 394: 145-151Crossref PubMed Scopus (670) Google Scholar, 15Chen X. Vinkemeier U. Zhao Y. Jeruzalmi D. Darnell Jr., J.E. Kuriyan J. Cell. 1998; 93: 827-839Abstract Full Text Full Text PDF PubMed Scopus (552) Google Scholar). The NH2 domain (∼125 residues) is a structurally independent moiety and appears to direct homotypic dimerization of inactive STATs (13Mertens C. Zhong M. Krishnaraj R. Zou W. Chen X. Darnell Jr., J.E. Genes Dev. 2006; 20: 3372-3381Crossref PubMed Scopus (110) Google Scholar). This domain has also been implicated in cooperative DNA binding to tandem GAS elements, as well as in nuclear import and export (16McBride K.M. Reich N.C. Sci. STKE 2003. 2003; : RE13Google Scholar, 17Vinkemeier U. J. Cell Biol. 2004; 167: 197-201Crossref PubMed Scopus (90) Google Scholar). The adjacent coiled-coil domain (residues ∼135–315) consists of a four-α-helix bundle that protrudes about 80 Å laterally from the core structure. This domain provides a large hydrophilic surface and binds regulators. The DNA-binding domain (residues ∼320–480) consists of a β-barrel immunoglobulin fold that directs binding to the GAS family of enhancers with nanomolar avidity. The corresponding structure of the Stat1-Stat2 heterodimer has unfortunately not yet been solved. The adjacent linker domain (residues ∼480–580) assures an appropriate conformation between the DNA-binding and dimerization domains. Reflecting its important role in receptor recruitment and dimerization, the SH2 domain (residues ∼575–680) is the most highly conserved domain. The tyrosine activation domain (residue ∼700) is positioned directly adjacent to the SH2 domain, precluding self (i.e. intramolecular)-association. The remaining carboxyl-terminal residues, which vary considerably among STAT family members, constitute the TAD. This divergence affords an opportunity to associate with distinct transcriptional regulators (see below). Stat1—This founding STAT was initially identified as a component of ISGF-3, the IFN-α-stimulated, ISRE-binding factor (Fig. 1; Ref. 18Schindler C. Shuai K. Prezioso V. Darnell J.E. Science. 1992; 257: 809-813Crossref PubMed Scopus (723) Google Scholar). Subsequent studies determined that GAF, the IFN-γ-stimulated GAS-binding transcription factor, consists of Stat1 homodimers (19Shuai K. Schindler C. Prezioso V. Darnell J.E. Science. 1992; 258: 1808-1812Crossref PubMed Scopus (657) Google Scholar). Gene targeting studies confirmed the pivotal role that Stat1 plays in the biological response to both type I and type II IFNs (20Meraz M.A. White J.M. Sheehan K.C. Bach E.A. Rodig S.J. Dighe A.S. Kaplan D.H. Riley J.K. Greenlund A.C. Campbell D. Carver-Moore K. DuBois R.N. Clark R. Aguet M. Schreiber R.D. Cell. 1996; 84: 431-442Abstract Full Text Full Text PDF PubMed Scopus (1395) Google Scholar, 21Durbin J.E. Hackenmiller R. Simon M.C. Levy D.E. Cell. 1996; 84: 443-450Abstract Full Text Full Text PDF PubMed Scopus (1296) Google Scholar). Consistent with this, humans expressing Stat1 mutants exhibit increased susceptibility to viral and bacterial infections (22Chapgier A. Boisson-Dupuis S. Jouanguy E. Vogt G. Feinberg J. Prochnicka-Chalufour A. Casrouge A. Yang K. Soudais C. Fieschi C. Santos O.F. Bustamante J. Picard C. de Beaucoudrey L. Emile J.F. Arkwright P.D. Schreiber R.D. Rolinck-Werninghaus C. Rosen-Wolff A. Magdorf K. Roesler J. Casanova J.L. PLoS Genet. 2006; 2: e131Crossref PubMed Scopus (144) Google Scholar). Intriguingly, Stat1 target genes appear to promote inflammation and antagonize proliferation. This contrasts the pro-proliferative and anti-inflammatory activities associated with Stat3 (see below). Thus, the ability of several cytokines to activate both Stat1 and Stat3 (e.g. members of the IFN-I and IL-6 families) may reflect an effort to achieve a more balanced response. Stat2—Stat2 was also initially identified as a component of ISGF-3. Biochemical and genetic studies have revealed that Stat2 plays a pivotal role in the biological response to type I IFNs, underscoring a critical role for Stat2 in regulating the IFN-I autocrine loop (4Decker T. Muller M. Stockinger S. Nat. Rev. Immunol. 2005; 5: 675-687Crossref PubMed Scopus (381) Google Scholar, 23Park C. Li S. Cha E. Schindler C. Immunity. 2000; 13: 795-804Abstract Full Text Full Text PDF PubMed Scopus (298) Google Scholar). Stat2 remains the most enigmatic member of this family. In addition to being the largest STAT (850 aa in man, 925 aa in mouse), with a large TAD, there is little evidence that active Stat2 homodimers form or directly bind DNA. Rather, Stat2 heterodimerizes with Stat1. Finally, the mechanism by which Stat2 is recruited to IFNAR remains controversial. Stat 3—Stat3 was initially identified as an IL-6-dependent transcription factor that promotes acute phase gene expression (24Akira S. Nishio Y. Inoue M. Wang X-J. Wei S. Matsusaka T. Yoshida K. Sudo T. Naruto M. Kishimoto T. Cell. 1994; 77: 63-71Abstract Full Text PDF PubMed Scopus (871) Google Scholar). It is now known to transduce signals for the entire IL-6 (IL-6, IL-11, IL-31, LIF, CNTF, CLC/CLF, NP, CT1, OSM) and IL-10 (IL-10, IL-19, IL-20, IL-22, IL-24, IL-26) families, as well as granulocyte (G)-CSF, leptin, IL-21, and IL-27 (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 3Levy D.E. Darnell Jr., J.E. Nat. Rev. Mol. Cell Biol. 2002; 3: 651-662Crossref PubMed Scopus (2501) Google Scholar). Additional studies in cultured cells have indicated that Stat3 is activated by several growth factors and oncogenes. Germ-line gene targeting has underscored a vital developmental role for Stat3 (i.e. Stat3–/– embryos die at E6.5–7.5; (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 3Levy D.E. Darnell Jr., J.E. Nat. Rev. Mol. Cell Biol. 2002; 3: 651-662Crossref PubMed Scopus (2501) Google Scholar)). In contrast, tissue specific knock-outs have highlighted an important anti-inflammatory role for Stat3 (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 3Levy D.E. Darnell Jr., J.E. Nat. Rev. Mol. Cell Biol. 2002; 3: 651-662Crossref PubMed Scopus (2501) Google Scholar). Another important property of Stat3 is its association with cancer. “Constitutively activated” Stat3 has been identified in many cancers (e.g. head and neck, mammary, multiple myelomas, and other hematological malignancies). Consistent with this, Stat3 directs the expression of anti-apoptotic and pro-survival genes (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 3Levy D.E. Darnell Jr., J.E. Nat. Rev. Mol. Cell Biol. 2002; 3: 651-662Crossref PubMed Scopus (2501) Google Scholar). Moreover, expression of a hypermorphic Stat3 allele promotes transformation (25Bromberg J.F. Wrzeszczynska M.H. Devgan G. Zhao Y. Pestell R.G. Albanese C. Darnell J.E. Cell. 1999; 98: 295-303Abstract Full Text Full Text PDF PubMed Scopus (2507) Google Scholar). Additionally, dominant-negative inhibitors, antisense oligonucleotides, decoy oligonucleotides, RNA interference, and genetic ablation have implicated Stat3 in tumorigenesis (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 3Levy D.E. Darnell Jr., J.E. Nat. Rev. Mol. Cell Biol. 2002; 3: 651-662Crossref PubMed Scopus (2501) Google Scholar). However, the potent anti-inflammatory activity of Stat3 is likely to contribute to these responses. Finally, several studies suggest that Stat3 promotes tumor growth through noncanonical mechanisms, i.e. in the absence of tyrosine phosphorylation and/or DNA binding (26Yang J. Chatterjee-Kishore M. Staugaitis S.M. Nguyen H. Schlessinger K. Levy D.E. Stark G.R. Cancer Res. 2005; 65: 939-947PubMed Google Scholar). Stat4—The gene for Stat4, identified through its homology to Stat1, was also found to lie adjacent to the Stat1 gene. Biochemical and genetic studies have underscored the important role Stat4 plays in directing the biological response to IL-12 and IL-23, which share receptor components (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 27Hunter C.A. Nat. Rev. Immunol. 2005; 5: 521-531Crossref PubMed Scopus (689) Google Scholar). Notably, IL-12 directs the Stat4-dependent polarization of naive CD4+ lymphocytes into potent Th1 effector cells (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 3Levy D.E. Darnell Jr., J.E. Nat. Rev. Mol. Cell Biol. 2002; 3: 651-662Crossref PubMed Scopus (2501) Google Scholar, 5O'Shea J.J. Gadina M. Schreiber R.D. Cell. 2002; 109: S121-S131Abstract Full Text Full Text PDF PubMed Scopus (947) Google Scholar). Stat4 plays an analogous role in IL-12-dependent NK cell activation. Additional studies have implicated both Stat4 tyrosine and serine phosphorylation in these vital immune activities (see below). More recently, Stat4 has been shown to be important in the IL-23-dependent expansion of Th17 cells and an associated autoimmunity (27Hunter C.A. Nat. Rev. Immunol. 2005; 5: 521-531Crossref PubMed Scopus (689) Google Scholar). Stat5—Two recently duplicated, tandem genes encode Stat5a and Stat5b. Along with their chromosomal neighbor, Stat3, these STATs exhibit the highest degree of homology to invertebrate STATs (28Miyoshi K. Cui Y. Riedlinger G. Lehoczky J. Zon L. Oka T. Dewar K. Hennighausen L. Genomics. 2001; 71: 150-155Crossref PubMed Scopus (54) Google Scholar). Consistent with this ancient pedigree, they are functionally quite pleiotropic. Biochemical and genetic studies have underscored the important role that Stat5a and Stat5b play in directing a biological response to the IL-3 (IL-3, IL-5, and GM-CSF), single-chain (e.g. GH, Prl, Tpo, and Epo), and γC (i.e. the IL-2, IL-7, IL-9, IL-15, and possibly IL-21) receptor families. Although extensive sequence similarity between Stat5a and Stat5b (∼96% aa identity) explains their functional redundancy, the responses to Prl and GH favor Stat5a and Stat5b, respectively. Finally, recent Stat5a-Stat5b gene targeting studies have revealed an important role for Stat5(s) in erythropoiesis and lymphopoiesis (29Yao Z. Cui Y. Watford W.T. Bream J.H. Yamaoka K. Hissong B.D. Li D. Durum S.K. Jiang Q. Bhandoola A. Hennighausen L. O'Shea J.J. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 1000-1005Crossref PubMed Scopus (290) Google Scholar). Stat6—Stat6 transduces signals for both IL-4 and IL-13, which share receptor components (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 3Levy D.E. Darnell Jr., J.E. Nat. Rev. Mol. Cell Biol. 2002; 3: 651-662Crossref PubMed Scopus (2501) Google Scholar, 5O'Shea J.J. Gadina M. Schreiber R.D. Cell. 2002; 109: S121-S131Abstract Full Text Full Text PDF PubMed Scopus (947) Google Scholar). Like Stat2, its chromosomal neighbor, Stat6 is one of the more divergent STATs. It also features a relatively large TAD (∼150 aa), which interacts with numerous transcriptional regulators (see below and Ref. 30Hebenstreit D. Wirnsberger G. Horejs-Hoeck J. Duschl A. Cytokine Growth Factor Rev. 2006; 17: 173-188Crossref PubMed Scopus (240) Google Scholar). Intriguingly, Stat6 homodimers recognize a GAS element that features an additional central nucleotide. Gene targeting studies have confirmed a critical role for Stat6 in the IL-4/IL-13-dependent polarization of naive CD4 lymphocytes into Th2 effectors, as well as in mast cell activation. These studies have also highlighted an important role for Stat6 in promoting B-cell function, including proliferation, maturation, and MHC-II and IgE expression. A characteristic feature of JAK-STAT signaling is its rapid onset and subsequent decay. As outlined above, activated STATs rapidly accumulate in the nucleus. Within a period of hours, however, the signal decays and the STATs are re-exported back to the cytoplasm for the next round of signaling. This decay entails down-regulation of both receptors and JAKs, as well as STAT transcriptional activity. Three well characterized mechanisms of STAT signal decay include: dephosphorylation, nuclear export, and SOCS (suppressors of cytokine signaling) feedback inhibition. However, a number of additional negative regulators have been reported, including PIAS, Nmi, and SLIM (31Shuai K. Oncogene. 2000; 19: 2638-2644Crossref PubMed Scopus (302) Google Scholar, 32Tanaka T. Soriano M.A. Grusby M.J. Immunity. 2005; 22: 729-736Abstract Full Text Full Text PDF PubMed Scopus (144) Google Scholar). Phosphatases—Phosphatases play an important role in regulating kinase-based signaling cascades. Genetic and biochemical approaches have implicated several phosphatases in the decay of cytokine receptors and JAKs, including SHP-1, SHP-2, and potentially CD45 (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 33Mustelin T. Vang T. Bottini N. Nat. Rev. Immunol. 2005; 5: 43-57Crossref PubMed Scopus (283) Google Scholar). Similar approaches have underscored a role for SHP-2, PTP1B, TC-PTP, and PTP-BL in STAT dephosphorylation (2Kisseleva T. Bhattacharya S. Braunstein J. Schindler C.W. Gene. 2002; 285: 1-24Crossref PubMed Scopus (907) Google Scholar, 33Mustelin T. Vang T. Bottini N. Nat. Rev. Immunol. 2005; 5: 43-57Crossref PubMed Scopus (283) Google Scholar, 34Nakahira M. Tanaka T. Robson B.E. Mizgerd J.P. Grusby M.J. Immunity. 2007; 26: 163-176Abstract Full Text Full Text PDF PubMed Scopus (44) Google Scholar). However, only two of these phosphatases, SHP-2 and TC-PTP, have been implicated in nuclear STAT dephosphorylation, which appears to be critical for STAT nuclear export (16McBride K.M. Reich N.C. Sci. STKE 2003. 2003; : RE13Google Scholar, 17Vinkemeier U. J. Cell Biol. 2004; 167: 197-201Crossref PubMed Scopus (90) Google Scholar, 33Mustelin T. Vang T. Bottini N. Nat. Rev. Immunol. 2005; 5: 43-57Crossref PubMed Scopus (283) Google Scholar). Nuclear Import-Export—Despite a dramatic ligand-dependent accumulation of STATs in the nucleus, the process of nuclear import and export is complex (16McBride K.M. Reich N.C. Sci. STKE 2003. 2003; : RE13Google Scholar, 17Vinkemeier U. J. Cell Biol. 2004; 167: 197-201Crossref PubMed Scopus (90) Google Scholar, 35Bhattacharya S. Schindler C. J. Clin. Investig. 2003; 111: 553-559Crossref PubMed Scopus (115) Google Scholar). The predominately cytosolic localization for inactive STATs has been shown to reflect a steady state, where continuous basal nuclear import is balanced by continuous basal nuclear export. This appears to be regulated by multiple nuclear export sequence (NES) and nuclear localization sequence (NLS) elements. During activation, the balance is shifted toward nuclear accumulation and during signal decay toward nuclear export. The SOCS Family—The SOCS proteins were identified as STAT target genes that directly antagonize STAT activation, resulting in a classic “feedback loop” (reviewed in Ref. 36Alexander W.S. Hilton D.J. Annu. Rev. Immunol. 2004; 22: 503-529Crossref PubMed Scopus (607) Google Scholar). Gene targeting studies have underscored the important role that SOCS-1, SOCS-2, and SOCS-3 play in antagonizing responses to IFN-γ-Stat1, IL-12-Stat4, IL-4-Stat6, GH-Stat5, and IL-6-Stat3. STATs undergo several well characterized covalent modifications in addition to canonical tyrosine phosphorylation, including serine phosphorylation, acetylation, and O-glycosylation. Potential roles for R-methylation (Stat1) and SUMOylation (Stat1) remain more controversial (37Song L. Bhattacharya S. Yunus A.A. Lima C.D. Schindler C. Blood. 2006; 108: 3237-3244Crossref PubMed Scopus (36) Google Scholar, 38Komyod W. Bauer U.M. Heinrich P.C. Haan S. Behrmann I. J. Biol. Chem. 2005; 280: 21700-21705Abstract Full Text Full Text PDF PubMed Scopus (61) Google Scholar). Serine Phosphorylation—All STATs except Stat2 are phosphorylated on at least one serine residue in their TAD (reviewed in Ref. 39Decker T. Kovarik P. Oncogene. 2000; 19: 2628-2637Crossref PubMed Scopus (710) Google Scholar, 40Decker T. Müller M. Kovarik P. Seghal P.B. Hirano T. Levy D.E. Signal Transducers and Activators of Transcription (Stats): Activation and Biology. Kluwer Academic, Dordrecht2003: 207-222Crossref Google Scholar). Conserved phosphorylation sites included a PMS*P motif (specifically, Ser727 in Stats 1 and 3 and Ser721 in Stat4), a PS*P motif (Ser725 in Stat5a; Ser730 in Stat5b), and a SS*PD motif (Ser756 in Stat6) (41Wang D. Moriggl R. Stravopodis D. Carpino N. Marine J.C. Teglund S. Feng J. Ihle J.N. EMBO J. 2000; 19: 392-399Crossref PubMed Google Scholar). Stat1 and Stat5 possess at least one additional serine phosphorylation site in their TAD, Ser708 and Ser779, respectively. STAT serine kinases have been identified through the use of inhibitors, dominant-negative alleles, and in vitro kinase assays. They include MAPK (p38MAPK: STATs 1, 3, 4; ERK: Stat3, 5; JNK: Stat3), PKCδ (Stat1, Stat3), mTOR (Stat3), NLK (Stat3 (42Kojima H. Sasaki T. Ishitani T. Iemura S. Zhao H. Kaneko S. Kunimoto H. Natsume T. Matsumoto K. Nakajima K. Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 4524-4529Crossref PubMed Scopus (70) Google Scholar)), and CaMKII and IKK∊ (Stat1 (39Decker T. Kovarik P. Oncogene. 2000; 19: 2628-2637Crossref PubMed Scopus (710) Google Scholar, 40Decker T. Müller M. Kovarik P. Seghal P.B. Hirano T. Levy D.E. Signal Transducers and Activators of Transcription (Stats): Activation and Biology. Kluwer Academic, Dordrecht2003: 207-222Crossref Google Scholar, 43Tenoever B.R. Ng S.L. Chua M.A. McWhirter S.M. Garcia-Sastre A. Maniatis T. Science. 2007; 315: 1274-1278Crossref PubMed Scopus (272) Google Scholar)). A role for these kinases has however only been confirmed by gene knock-out or knockdown in a limited number of cases. Subcellular localization may add an additional level of specificity, as serine phosphorylation of IFN-γ-activated Stat1 dimers appears to occur exclusively in the nucleus. STAT serine phosphorylation regulates transcriptional activity (see below). Consistent with this, mice expressing a Stat1S727A mutant exhibit defective IFN-γ-mediated innate immunity (44Varinou L. Ramsauer K. Karaghiosoff M. Kolbe T. Pfeffer K. Muller M. Decker T. Immunity. 2003; 19: 793-802Abstract Full Text Full Text PDF PubMed Scopus (197) Google Scholar). Stat3S727A homozygous (SA/SA) mice exhibit a ∼50% reduction in target gene expression but without an overt phenotype (45Shen Y. Schlessinger K. Zhu X. Meffre E. Quimby F. Levy D.E. Darnell Jr., J.E. Mol. Cell. Biol. 2004; 24: 407-419Crossref PubMed Scopus (157) Google Scholar). By contrast, expression of Stat3S727A in Stat3–/– background yields perinatal lethality (75%), growth retardation, and biological defects not evident in Stat3+/– controls (45Shen Y. Schlessinger K. Zhu X. Meffre E. Quimby F. Levy D.E. Darnell Jr., J.E. Mol. Cell. Biol. 2004; 24: 407-419Crossref PubMed Scopus (157) Google Scholar). Likewise, IL-12-induced production of IFN-γ is impaired in Stat4S721A expressing T-cells (46Morinobu A. Gadina M. Strober W. Visconti R. Fornace A. Montagna C. Feldman G.M. Nishikomori R. O'Shea J.J. Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 12281-12286Crossref PubMed Scopus (147) Google Scholar). Following TLR (Toll-like receptor), IL-1R, or TNFR (tumor necrosis factor-α receptor) stimulation, Stat1 becomes phosphorylated on Ser727 in the absence of tyrosine phosphorylation, raising the intriguing question of whether serine-only-phosphorylated STATs direct biological activity (39Decker T. Kovarik P. Oncogene. 2000; 19: 2628-2637Crossref PubMed Scopus (710) Google Scholar). Consistent with this, transcriptional activity has been reported for Stat1 and Stat3 mutants defective in tyrosine phosphorylation (26Yang J. Chatterjee-Kishore M. Staugaitis S.M. Nguyen H. Schlessinger K. Levy D.E. Stark G.R. Cancer Res. 2005; 65: 939-947PubMed Google Scholar, 47Kim S. Koga T. Isobe M. Kern B.E. Yokochi T. Chin Y.E. Karsenty G. Taniguchi T. Takayanagi H. Genes Dev. 2003; 17: 1979-1991Crossref PubMed Scopus (222) Google Scholar). However, these mutants appear to regulate transcription by squelching other transcription factors like NFκB. Additional studies suggest that some Stat1-dependent apoptotic responses require phosphorylation of Ser727 but not tyrosine (40Decker T. Müller M. Kovarik P. Seghal P.B. Hirano T. Levy D.E. Signal Transducers and Activators of Transcription (Stats): Activation and Biology. Kluwer Academic, Dordrecht2003: 207-222Crossref Google Scholar). Acetylation—Reversible lysine acetylation has been reported for Stat1, Stat3, and Stat6. Interestingly, Stat1 and Stat3 acetylation impinges on NFκB signaling, yielding a pro-apoptotic effect in the case of Stat1 and an anti-apoptotic effect in the case of Stat3 (49Kramer O.H. Baus D. Knauer S.K. Stein S. Jager E. Stauber R.H. Grez M. Pfitzner E. Heinzel T. Genes Dev. 2006; 20: 473-485Crossref PubMed Scopus (180) Google Scholar, 50Nadiminty N. Lou W. Lee S.O. Lin X. Trump D.L. Gao A.C. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 7264-7269Crossref PubMed Scopus (114) Google Scholar). Stat3 acetylation also appears to regulate transcriptional activity and homodimer stability (51Yuan Z.L. Guan Y.J. Chatterjee D. Chin Y.E. Science. 2005; 307: 269-273Crossref PubMed Scopus (616) Google Scholar, 52Wang R. Cherukuri P. Luo J. J. Biol. Chem. 2005; 280: 11528-11534Abstract Full Text Full Text PDF PubMed Scopus (216) Google Scholar). O-Glycosylation—O-Glycosylation of Stat5 Thr92 is associated with an increased affinity for the coactivator CBP (53Gewinner C. Hart G. Zachara N. Cole R. Beisenherz-Huss C. Groner B. J. Biol. Chem. 2004; 279: 3563-3572Abstract Full Text Full Text PDF PubMed Scopus (140) Google Scholar). Intriguingly, this O-glycosylation site is conserved in Stat1, Stat3, and Stat6. The STAT TAD was initially identified by analysis of natural Stat1 splice variants Stat1α and Stat1β. Stat1β, which lacks 39 carboxyl-terminal amino acids, forms transcriptionally inactive homodimers. Likewsie, STAT carboxyl-terminal domains impart transcriptional activity when fused to a Gal4 DNA-binding domain (3Levy D.E. Darnell Jr., J.E. Nat. Rev. Mol. Cell Biol. 2002; 3: 651-662Crossref PubMed Scopus (2501) Google Scholar). Many of these TADs contain conserved serine phosphorylation sites that direct the recruitment of coactivators, e.g. CBP or MCM (mini-chromosome maintenance) complex (40Decker T. Müller M. Kovarik P. Seghal P.B. Hirano T. Levy D.E. Signal Transducers and Activators of Transcription (Stats): Activation and Biology. Kluwer Academic, Dordrecht2003: 207-222Crossref Google Scholar, 54Ramsauer K. Farlik M. Zupkovitz G. Seiser C. Kroger A. Hauser H. Decker T. Proc. Natl. Acad. Sci. U. S. A. 2007; 104: 2849-2854Crossref PubMed Scopus (89) Google Scholar). Another regulatory role for the STAT TADs appears to be protein stability, as several STATs, including Stats 4–6, can be targeted for ubiquitin-dependent destruction, whereas Stats 1–3 are considerably more stable (32Tanaka T. Soriano M.A. Grusby M.J. Immunity. 2005; 22: 729-736Abstract Full Text Full Text PDF PubMed Scopus (144) Google Scholar, 41Wang D. Moriggl R. Stravopodis D. Carpino N. Marine J.C. Teglund S. Feng J. Ihle J.N. EMBO J. 2000; 19: 392-399Crossref PubMed Google Scholar). Alternatively spliced STAT proteins lacking a TAD may still direct transcription through an interaction with partners possessing a TAD. For instance, Stat3β can stimulate gene expression through its ability to recruit c-Jun as a cooperating transcription factor (55Sasse J. Hemmann U. Schwartz C. Schniertshauer U. Heesel B. Landgraf C. Schneider-Mergener J. Heinrich P.C. Horn F. Mol. Cell. Biol. 1997; 17: 4677-4686Crossref PubMed Scopus (111) Google Scholar, 56Yoo J.Y. Huso D.L. Nathans D. Desiderio S. Cell. 2002; 108: 331-344Abstract Full Text Full Text PDF PubMed Scopus (114) Google Scholar). Interaction between Stat3 and c-Jun appears to induce gene expression in liver but has been associated with transcriptional inhibition on the Fas promoter, highlighting an intriguing area for future study (57Ivanov V.N. Bhoumik A. Krasilnikov M. Raz R. Owen-Schaub L.B. Levy D. Horvath C.M. Ronai Z. Mol. Cell. 2001; 7: 517-528Abstract Full Text Full Text PDF PubMed Scopus (209) Google Scholar, 58Schmerer M. Torregroza I. Pascal A. Umbhauer M. Evans T. Blood. 2006; 108: 2989-2997Crossref PubMed Scopus (8) Google Scholar). STATs also recruit chromatin-modifying enzymes through their TADs. All STATs likely bind to p300 and CBP (3Levy D.E. Darnell Jr., J.E. Nat. Rev. Mol. Cell Biol. 2002; 3: 651-662Crossref PubMed Scopus (2501) Google Scholar). Stat2 also binds two histone acetyltransferases (HATs), PCAF and GCN5 (59Paulson M. Press C. Smith E. Tanese N. Levy D.E. Nat. Cell Biol. 2002; 4: 140-147Crossref PubMed Scopus (93) Google Scholar). Additional HAT enzymes have been implicated in STAT transcriptional activity, in particular NcoA-1, which interacts with the TADs of Stat3 and Stat5, and an LXXLL motif in Stat6 (60Litterst C.M. Pfitzner E. J. Biol. Chem. 2002; 277: 36052-36060Abstract Full Text Full Text PDF PubMed Scopus (49) Google Scholar, 61Giraud S. Bienvenu F. Avril S. Gascan H. Heery D.M. Coqueret O. J. Biol. Chem. 2002; 277: 8004-8011Abstract Full Text Full Text PDF PubMed Scopus (123) Google Scholar). Nucleosome remodeling also contributes to STAT-dependent transcription. Cells defective in the SWI/SNF-like BAF chromatin remodeling complex are impaired in the transcription of Stat4 target genes (62Letimier F.A. Passini N. Gasparian S. Bianchi E. Rogge L. EMBO J. 2007; 26: 1292-1302Crossref PubMed Scopus (62) Google Scholar), IFNγ-induced genes (63Pattenden S.G. Klose R. Karaskov E. Bremner R. EMBO J. 2002; 21: 1978-1986Crossref PubMed Scopus (91) Google Scholar), and a subset of IFN-I-stimulated genes (64Liu H. Kang H. Liu R. Chen X. Zhao K. Mol. Cell. Biol. 2002; 22: 6471-6479Crossref PubMed Scopus (92) Google Scholar, 65Huang M. Qian F. Hu Y. Ang C. Li Z. Wen Z. Nat. Cell Biol. 2002; 4: 774-781Crossref PubMed Scopus (123) Google Scholar). The gene-specific effect of BAF in the IFN-I response is surprising, as a BAF subunit interacts with Stat2 and is required for most IFN-I-inducible genes (23Park C. Li S. Cha E. Schindler C. Immunity. 2000; 13: 795-804Abstract Full Text Full Text PDF PubMed Scopus (298) Google Scholar). Differential regulation of STAT target genes has been observed in other contexts as well. The PIAS1 negative regulator appears to target mainly promoters that possess relatively weak affinity STAT binding sites (66Liu B. Mink S. Wong K.A. Stein N. Getman C. Dempsey P.W. Wu H. Shuai K. Nat. Immunol. 2004; 5: 891-898Crossref PubMed Scopus (210) Google Scholar). Additionally, ISGF-3 binding site affinity may also be regulated by IKK∊-dependent serine phosphorylation (43Tenoever B.R. Ng S.L. Chua M.A. McWhirter S.M. Garcia-Sastre A. Maniatis T. Science. 2007; 315: 1274-1278Crossref PubMed Scopus (272) Google Scholar). Several individual components of mammalian mediator interact with the Stat2 TAD and are recruited to active promoters along with pol II. Some of these interactions directly enhance the frequency of transcriptional initiation, suggesting that consecrating Stat2-mediator-pol II interactions may be necessary and possibly rate-limiting for IFN-stimulated transcription (67Lau J.F. Nusinzon I. Burakov D. Freedman L.P. Horvath C.M. Mol. Cell. Biol. 2003; 23: 620-628Crossref PubMed Scopus (55) Google Scholar). Another bridging molecule connecting STAT TAD with pol II is p100, a staphylococcal nuclease-like Tudor domain-containing protein (68Yang J. Aittomaki S. Pesu M. Carter K. Saarinen J. Kalkkinen N. Kieff E. Silvennoinen O. EMBO J. 2002; 21: 4950-4958Crossref PubMed Scopus (144) Google Scholar). This suggests that p100 may serve to integrate Stat6 DNA binding and transcriptional initiation. Finally, an interesting feature of Stat1-, Stat2-, and Stat5-mediated transcription is the requirement for HDAC as a coactivator. Although HDAC activity is typically associated with transcriptional repression, pharmacologic and gene-targeting studies have revealed that several STATs require HDAC as a transcriptional activator (69Nusinzon I. Horvath C.M. J. Interferon Cytokine Res. 2005; 25: 745-748Crossref PubMed Scopus (22) Google Scholar)." @default.
- W2002117801 created "2016-06-24" @default.
- W2002117801 creator A5038405879 @default.
- W2002117801 creator A5042463876 @default.
- W2002117801 creator A5058623923 @default.
- W2002117801 date "2007-07-01" @default.
- W2002117801 modified "2023-10-17" @default.
- W2002117801 title "JAK-STAT Signaling: From Interferons to Cytokines" @default.
- W2002117801 cites W1821858011 @default.
- W2002117801 cites W1965398762 @default.
- W2002117801 cites W1969979508 @default.
- W2002117801 cites W1976989643 @default.
- W2002117801 cites W1977365050 @default.
- W2002117801 cites W1983370748 @default.
- W2002117801 cites W1983974405 @default.
- W2002117801 cites W1984550190 @default.
- W2002117801 cites W1987029220 @default.
- W2002117801 cites W1991601985 @default.
- W2002117801 cites W1993034428 @default.
- W2002117801 cites W1998607186 @default.
- W2002117801 cites W2013354098 @default.
- W2002117801 cites W2014518336 @default.
- W2002117801 cites W2016188929 @default.
- W2002117801 cites W2016949937 @default.
- W2002117801 cites W2017188699 @default.
- W2002117801 cites W2023219535 @default.
- W2002117801 cites W2024727248 @default.
- W2002117801 cites W2027844562 @default.
- W2002117801 cites W2030170890 @default.
- W2002117801 cites W2030411429 @default.
- W2002117801 cites W2032260589 @default.
- W2002117801 cites W2035027025 @default.
- W2002117801 cites W2035281138 @default.
- W2002117801 cites W2040665228 @default.
- W2002117801 cites W2047081723 @default.
- W2002117801 cites W2048015744 @default.
- W2002117801 cites W2052982889 @default.
- W2002117801 cites W2060926084 @default.
- W2002117801 cites W2060934687 @default.
- W2002117801 cites W2061776631 @default.
- W2002117801 cites W2062005942 @default.
- W2002117801 cites W2064829945 @default.
- W2002117801 cites W2065601509 @default.
- W2002117801 cites W2066614655 @default.
- W2002117801 cites W2067626539 @default.
- W2002117801 cites W2068133168 @default.
- W2002117801 cites W2072669480 @default.
- W2002117801 cites W2073189570 @default.
- W2002117801 cites W2074356752 @default.
- W2002117801 cites W2075015226 @default.
- W2002117801 cites W2075191309 @default.
- W2002117801 cites W2079357798 @default.
- W2002117801 cites W2082889122 @default.
- W2002117801 cites W2086622664 @default.
- W2002117801 cites W2087814657 @default.
- W2002117801 cites W2091906420 @default.
- W2002117801 cites W2093953283 @default.
- W2002117801 cites W2097166235 @default.
- W2002117801 cites W2105827711 @default.
- W2002117801 cites W2122506044 @default.
- W2002117801 cites W2126989390 @default.
- W2002117801 cites W2132572271 @default.
- W2002117801 cites W2136918115 @default.
- W2002117801 cites W2138049320 @default.
- W2002117801 cites W2138596426 @default.
- W2002117801 cites W2147314043 @default.
- W2002117801 cites W2147803180 @default.
- W2002117801 cites W2153050742 @default.
- W2002117801 cites W2161825631 @default.
- W2002117801 cites W2163406329 @default.
- W2002117801 cites W2164948092 @default.
- W2002117801 cites W2169121410 @default.
- W2002117801 cites W2799941631 @default.
- W2002117801 doi "https://doi.org/10.1074/jbc.r700016200" @default.
- W2002117801 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17502367" @default.
- W2002117801 hasPublicationYear "2007" @default.
- W2002117801 type Work @default.
- W2002117801 sameAs 2002117801 @default.
- W2002117801 citedByCount "1072" @default.
- W2002117801 countsByYear W20021178012012 @default.
- W2002117801 countsByYear W20021178012013 @default.
- W2002117801 countsByYear W20021178012014 @default.
- W2002117801 countsByYear W20021178012015 @default.
- W2002117801 countsByYear W20021178012016 @default.
- W2002117801 countsByYear W20021178012017 @default.
- W2002117801 countsByYear W20021178012018 @default.
- W2002117801 countsByYear W20021178012019 @default.
- W2002117801 countsByYear W20021178012020 @default.
- W2002117801 countsByYear W20021178012021 @default.
- W2002117801 countsByYear W20021178012022 @default.
- W2002117801 countsByYear W20021178012023 @default.
- W2002117801 crossrefType "journal-article" @default.
- W2002117801 hasAuthorship W2002117801A5038405879 @default.
- W2002117801 hasAuthorship W2002117801A5042463876 @default.
- W2002117801 hasAuthorship W2002117801A5058623923 @default.
- W2002117801 hasBestOaLocation W20021178011 @default.
- W2002117801 hasConcept C157333092 @default.
- W2002117801 hasConcept C185592680 @default.