Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002127291> ?p ?o ?g. }
- W2002127291 endingPage "167" @default.
- W2002127291 startingPage "123" @default.
- W2002127291 abstract "The pressure perturbation and its derivative for an acoustic wave in a uniformly moving medium are canonical variables whose Hamiltonean is the acoustic energy. In the present paper is introduced a generalized acoustic Hamiltonean or oscillation energy that: (i) is conserved in a uniform flow, when it reduces to the acoustic energy; (ii) is not conserved in an homentropic unidirectional shear flow, in which case it has minimum at the critical layer where the Doppler shifted frequency vanishes. These properties are illustrated in the case of an unidirectional shear flow with an hyperbolic tangent velocity profile, representing a boundary layer over a flat rigid or impedance wall. The exact solution in the boundary layer can be matched to plane waves in the free stream, and reflection and transmission coefficients are defined for a incident wave of unit amplitude. If there is no critical layer in the boundary layer, a single powers series solutions covers the whole flow region from the free stream up to the wall; it is shown that for a rigid wall the modulus of the reflection coefficient is unity, but the argument is not zero, i.e. all sound is reflected with a phase shift. Also it is shown that, in this case, of a boundary layer without critical layer over a rigid wall, the phase of the transmission coefficient is one-half the phase the phase of the reflection coefficient, i.e. sound takes the same time to cross the boundary layer both ways, bouncing from the wall in between. In more general cases, viz. impedance wall and/or boundary layer with a critical layer, the modulus and phase of the reflection and transmission coefficients are calculated as functions of the angle of incidence, free stream Mach number and boundary layer thickness measured on a wavelength scale. When a critical layer is present in the boundary layer, the two pairs of solutions around it and the free stream must be matched, in order to obtain the acoustic field across the whole boundary layer, and calculate the reflection and transmission coefficients. The special case of critical layer at the free stream is also discussed. The cases discussed include boundary layers with and without a critical layer, subsonic and supersonic free streams with one zone of silence and one or two propagation zone(s), and rigid, inductive, reactive and mixed impedance walls. The generalized acoustic Hamiltonean or oscillation energy is also used to obtain a simple approximation for the modulus of the transmission factor, which is reasonably accurate not far from normal incidence." @default.
- W2002127291 created "2016-06-24" @default.
- W2002127291 creator A5036174062 @default.
- W2002127291 creator A5085273375 @default.
- W2002127291 date "2013-01-01" @default.
- W2002127291 modified "2023-09-30" @default.
- W2002127291 title "On an Acoustic Oscillation Energy for Shear Flows" @default.
- W2002127291 cites W1524252625 @default.
- W2002127291 cites W1611412965 @default.
- W2002127291 cites W1964148142 @default.
- W2002127291 cites W1968514916 @default.
- W2002127291 cites W1971974250 @default.
- W2002127291 cites W1976746709 @default.
- W2002127291 cites W1981453439 @default.
- W2002127291 cites W1982172189 @default.
- W2002127291 cites W1985469244 @default.
- W2002127291 cites W1988497189 @default.
- W2002127291 cites W1990775741 @default.
- W2002127291 cites W1997646587 @default.
- W2002127291 cites W2005792223 @default.
- W2002127291 cites W2009814652 @default.
- W2002127291 cites W2013592325 @default.
- W2002127291 cites W2024123390 @default.
- W2002127291 cites W2029130812 @default.
- W2002127291 cites W2030634573 @default.
- W2002127291 cites W2038356344 @default.
- W2002127291 cites W2049686617 @default.
- W2002127291 cites W2050766529 @default.
- W2002127291 cites W2054226621 @default.
- W2002127291 cites W2055380728 @default.
- W2002127291 cites W2055647646 @default.
- W2002127291 cites W2056463471 @default.
- W2002127291 cites W2063176783 @default.
- W2002127291 cites W2064780723 @default.
- W2002127291 cites W2066119727 @default.
- W2002127291 cites W2066973162 @default.
- W2002127291 cites W2069035676 @default.
- W2002127291 cites W2073489061 @default.
- W2002127291 cites W2084742709 @default.
- W2002127291 cites W2084965680 @default.
- W2002127291 cites W2086769342 @default.
- W2002127291 cites W2087924247 @default.
- W2002127291 cites W2091713083 @default.
- W2002127291 cites W2093622974 @default.
- W2002127291 cites W2098040133 @default.
- W2002127291 cites W2105087027 @default.
- W2002127291 cites W2107985659 @default.
- W2002127291 cites W2109963220 @default.
- W2002127291 cites W2113105730 @default.
- W2002127291 cites W2122996935 @default.
- W2002127291 cites W2152324951 @default.
- W2002127291 doi "https://doi.org/10.1260/1475-472x.12.1-2.123" @default.
- W2002127291 hasPublicationYear "2013" @default.
- W2002127291 type Work @default.
- W2002127291 sameAs 2002127291 @default.
- W2002127291 citedByCount "10" @default.
- W2002127291 countsByYear W20021272912013 @default.
- W2002127291 countsByYear W20021272912015 @default.
- W2002127291 countsByYear W20021272912016 @default.
- W2002127291 countsByYear W20021272912018 @default.
- W2002127291 countsByYear W20021272912019 @default.
- W2002127291 countsByYear W20021272912021 @default.
- W2002127291 countsByYear W20021272912022 @default.
- W2002127291 crossrefType "journal-article" @default.
- W2002127291 hasAuthorship W2002127291A5036174062 @default.
- W2002127291 hasAuthorship W2002127291A5085273375 @default.
- W2002127291 hasConcept C111603439 @default.
- W2002127291 hasConcept C120665830 @default.
- W2002127291 hasConcept C121332964 @default.
- W2002127291 hasConcept C134306372 @default.
- W2002127291 hasConcept C151890184 @default.
- W2002127291 hasConcept C180205008 @default.
- W2002127291 hasConcept C204723758 @default.
- W2002127291 hasConcept C23221634 @default.
- W2002127291 hasConcept C24890656 @default.
- W2002127291 hasConcept C33923547 @default.
- W2002127291 hasConcept C41700454 @default.
- W2002127291 hasConcept C57879066 @default.
- W2002127291 hasConcept C74650414 @default.
- W2002127291 hasConcept C81288441 @default.
- W2002127291 hasConcept C98937189 @default.
- W2002127291 hasConceptScore W2002127291C111603439 @default.
- W2002127291 hasConceptScore W2002127291C120665830 @default.
- W2002127291 hasConceptScore W2002127291C121332964 @default.
- W2002127291 hasConceptScore W2002127291C134306372 @default.
- W2002127291 hasConceptScore W2002127291C151890184 @default.
- W2002127291 hasConceptScore W2002127291C180205008 @default.
- W2002127291 hasConceptScore W2002127291C204723758 @default.
- W2002127291 hasConceptScore W2002127291C23221634 @default.
- W2002127291 hasConceptScore W2002127291C24890656 @default.
- W2002127291 hasConceptScore W2002127291C33923547 @default.
- W2002127291 hasConceptScore W2002127291C41700454 @default.
- W2002127291 hasConceptScore W2002127291C57879066 @default.
- W2002127291 hasConceptScore W2002127291C74650414 @default.
- W2002127291 hasConceptScore W2002127291C81288441 @default.
- W2002127291 hasConceptScore W2002127291C98937189 @default.
- W2002127291 hasIssue "1-2" @default.
- W2002127291 hasLocation W20021272911 @default.