Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002127366> ?p ?o ?g. }
- W2002127366 endingPage "114" @default.
- W2002127366 startingPage "104" @default.
- W2002127366 abstract "Dust storms are known to have adverse effects on public health. Atmospheric dust loading is also one of the major uncertainties in global climatic modeling as it is known to have a significant impact on the radiation budget and atmospheric stability. This study develops an integrated model for dust storm detection and retrieval based on the combination of geostationary satellite images and forward trajectory model. The proposed model consists of three components: (i) a Neural Network (NN) model for near real-time detection of dust storms; (ii) a NN model for dust Aerosol Optical Thickness (AOT) retrieval; and (iii) the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model to analyze the transports of dust storms. These three components are combined using an event-driven active geo-processing workflow technique. The NN models were trained for the dust detection and validated using sunphotometer measurements from the AErosol RObotic NETwork (AERONET). The HYSPLIT model was applied in the regions with high probabilities of dust locations, and simulated the transport pathways of dust storms. This newly automated hybrid method can be used to give advance near real-time warning of dust storms, for both environmental authorities and public. The proposed methodology can be applied on early warning of adverse air quality conditions, and prediction of low visibility associated with dust storm events for port and airport authorities." @default.
- W2002127366 created "2016-06-24" @default.
- W2002127366 creator A5025619211 @default.
- W2002127366 creator A5033427661 @default.
- W2002127366 creator A5037413369 @default.
- W2002127366 creator A5088021145 @default.
- W2002127366 creator A5090596512 @default.
- W2002127366 date "2015-12-01" @default.
- W2002127366 modified "2023-10-16" @default.
- W2002127366 title "Retrieval of dust storm aerosols using an integrated Neural Network model" @default.
- W2002127366 cites W1594501630 @default.
- W2002127366 cites W1966513391 @default.
- W2002127366 cites W1968078563 @default.
- W2002127366 cites W1976112978 @default.
- W2002127366 cites W1980100414 @default.
- W2002127366 cites W1984270456 @default.
- W2002127366 cites W1989437091 @default.
- W2002127366 cites W1990646419 @default.
- W2002127366 cites W1996550443 @default.
- W2002127366 cites W2003514269 @default.
- W2002127366 cites W2003803820 @default.
- W2002127366 cites W2006699470 @default.
- W2002127366 cites W2012247153 @default.
- W2002127366 cites W2017818929 @default.
- W2002127366 cites W2024297612 @default.
- W2002127366 cites W2024940236 @default.
- W2002127366 cites W2025822438 @default.
- W2002127366 cites W2026088405 @default.
- W2002127366 cites W2026317156 @default.
- W2002127366 cites W2029820618 @default.
- W2002127366 cites W2031593709 @default.
- W2002127366 cites W2036699284 @default.
- W2002127366 cites W2037766077 @default.
- W2002127366 cites W2040601571 @default.
- W2002127366 cites W2042766448 @default.
- W2002127366 cites W2046717724 @default.
- W2002127366 cites W2048986169 @default.
- W2002127366 cites W2050250373 @default.
- W2002127366 cites W2052203587 @default.
- W2002127366 cites W2053870625 @default.
- W2002127366 cites W2057535796 @default.
- W2002127366 cites W2067638570 @default.
- W2002127366 cites W2081317620 @default.
- W2002127366 cites W2087371254 @default.
- W2002127366 cites W2089179156 @default.
- W2002127366 cites W2089433206 @default.
- W2002127366 cites W2089891032 @default.
- W2002127366 cites W2092889986 @default.
- W2002127366 cites W2092928991 @default.
- W2002127366 cites W2094366368 @default.
- W2002127366 cites W2099066719 @default.
- W2002127366 cites W2102553184 @default.
- W2002127366 cites W2107045929 @default.
- W2002127366 cites W2115169659 @default.
- W2002127366 cites W2127203281 @default.
- W2002127366 cites W2136567789 @default.
- W2002127366 cites W2140879871 @default.
- W2002127366 cites W2142071970 @default.
- W2002127366 cites W2145265567 @default.
- W2002127366 cites W2147692692 @default.
- W2002127366 cites W2158143121 @default.
- W2002127366 cites W2159250567 @default.
- W2002127366 cites W2160963690 @default.
- W2002127366 cites W2163464065 @default.
- W2002127366 cites W2167220187 @default.
- W2002127366 cites W2169258810 @default.
- W2002127366 cites W2172486268 @default.
- W2002127366 cites W2173251738 @default.
- W2002127366 cites W393405099 @default.
- W2002127366 cites W4211020799 @default.
- W2002127366 cites W4231841968 @default.
- W2002127366 cites W2159746385 @default.
- W2002127366 doi "https://doi.org/10.1016/j.cageo.2015.02.016" @default.
- W2002127366 hasPublicationYear "2015" @default.
- W2002127366 type Work @default.
- W2002127366 sameAs 2002127366 @default.
- W2002127366 citedByCount "16" @default.
- W2002127366 countsByYear W20021273662016 @default.
- W2002127366 countsByYear W20021273662017 @default.
- W2002127366 countsByYear W20021273662018 @default.
- W2002127366 countsByYear W20021273662020 @default.
- W2002127366 countsByYear W20021273662022 @default.
- W2002127366 countsByYear W20021273662023 @default.
- W2002127366 crossrefType "journal-article" @default.
- W2002127366 hasAuthorship W2002127366A5025619211 @default.
- W2002127366 hasAuthorship W2002127366A5033427661 @default.
- W2002127366 hasAuthorship W2002127366A5037413369 @default.
- W2002127366 hasAuthorship W2002127366A5088021145 @default.
- W2002127366 hasAuthorship W2002127366A5090596512 @default.
- W2002127366 hasConcept C105306849 @default.
- W2002127366 hasConcept C123403432 @default.
- W2002127366 hasConcept C126314574 @default.
- W2002127366 hasConcept C127313418 @default.
- W2002127366 hasConcept C127413603 @default.
- W2002127366 hasConcept C146978453 @default.
- W2002127366 hasConcept C153294291 @default.
- W2002127366 hasConcept C16405173 @default.
- W2002127366 hasConcept C19269812 @default.