Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002128052> ?p ?o ?g. }
- W2002128052 endingPage "224" @default.
- W2002128052 startingPage "217" @default.
- W2002128052 abstract "In this paper, a novel framework is proposed for dynamic textures (DTs) recognition by learning a high level feature using deep neural network (DNN). The insight behind the method is that a DT appearing in different videos should share similar features, which can be learned for better recognition performance. Unlike many prior works only focus on low level or middle level features, we propose a novel high level feature learning method using DNN. Our goal is to construct a compact and discriminative semantic feature. The conventional bag of features approach using k-means is not semantically meaningful since the clustering criterion is based on appearance similarity. The proposed framework can effectively overcome the problem by capturing the semantic relations of the middle level by DNN. Extensive experiments with qualitative and quantitative results demonstrate the efficacy of our approach." @default.
- W2002128052 created "2016-06-24" @default.
- W2002128052 creator A5002391274 @default.
- W2002128052 creator A5081912691 @default.
- W2002128052 date "2015-04-01" @default.
- W2002128052 modified "2023-10-13" @default.
- W2002128052 title "Exploiting high level feature for dynamic textures recognition" @default.
- W2002128052 cites W1534763723 @default.
- W2002128052 cites W1549386224 @default.
- W2002128052 cites W1560120246 @default.
- W2002128052 cites W1567365482 @default.
- W2002128052 cites W1992666150 @default.
- W2002128052 cites W1992960277 @default.
- W2002128052 cites W1993882792 @default.
- W2002128052 cites W1995997122 @default.
- W2002128052 cites W2024868105 @default.
- W2002128052 cites W2031365860 @default.
- W2002128052 cites W2040704490 @default.
- W2002128052 cites W2041390734 @default.
- W2002128052 cites W2100495367 @default.
- W2002128052 cites W2105795585 @default.
- W2002128052 cites W2114338548 @default.
- W2002128052 cites W2116931983 @default.
- W2002128052 cites W2127541232 @default.
- W2002128052 cites W2134275275 @default.
- W2002128052 cites W2134731454 @default.
- W2002128052 cites W2136922672 @default.
- W2002128052 cites W2146966357 @default.
- W2002128052 cites W2149774527 @default.
- W2002128052 cites W2158270878 @default.
- W2002128052 cites W2160144769 @default.
- W2002128052 cites W2162374132 @default.
- W2002128052 cites W2167034998 @default.
- W2002128052 cites W2533739470 @default.
- W2002128052 cites W2912155302 @default.
- W2002128052 cites W4206165639 @default.
- W2002128052 cites W4245344577 @default.
- W2002128052 doi "https://doi.org/10.1016/j.neucom.2014.12.001" @default.
- W2002128052 hasPublicationYear "2015" @default.
- W2002128052 type Work @default.
- W2002128052 sameAs 2002128052 @default.
- W2002128052 citedByCount "29" @default.
- W2002128052 countsByYear W20021280522016 @default.
- W2002128052 countsByYear W20021280522017 @default.
- W2002128052 countsByYear W20021280522018 @default.
- W2002128052 countsByYear W20021280522019 @default.
- W2002128052 countsByYear W20021280522020 @default.
- W2002128052 countsByYear W20021280522021 @default.
- W2002128052 countsByYear W20021280522022 @default.
- W2002128052 countsByYear W20021280522023 @default.
- W2002128052 crossrefType "journal-article" @default.
- W2002128052 hasAuthorship W2002128052A5002391274 @default.
- W2002128052 hasAuthorship W2002128052A5081912691 @default.
- W2002128052 hasConcept C103278499 @default.
- W2002128052 hasConcept C115961682 @default.
- W2002128052 hasConcept C119857082 @default.
- W2002128052 hasConcept C120665830 @default.
- W2002128052 hasConcept C121332964 @default.
- W2002128052 hasConcept C138885662 @default.
- W2002128052 hasConcept C153180895 @default.
- W2002128052 hasConcept C154945302 @default.
- W2002128052 hasConcept C192209626 @default.
- W2002128052 hasConcept C199360897 @default.
- W2002128052 hasConcept C2776401178 @default.
- W2002128052 hasConcept C2780801425 @default.
- W2002128052 hasConcept C2781122975 @default.
- W2002128052 hasConcept C41008148 @default.
- W2002128052 hasConcept C41895202 @default.
- W2002128052 hasConcept C50644808 @default.
- W2002128052 hasConcept C59404180 @default.
- W2002128052 hasConcept C73555534 @default.
- W2002128052 hasConcept C97931131 @default.
- W2002128052 hasConceptScore W2002128052C103278499 @default.
- W2002128052 hasConceptScore W2002128052C115961682 @default.
- W2002128052 hasConceptScore W2002128052C119857082 @default.
- W2002128052 hasConceptScore W2002128052C120665830 @default.
- W2002128052 hasConceptScore W2002128052C121332964 @default.
- W2002128052 hasConceptScore W2002128052C138885662 @default.
- W2002128052 hasConceptScore W2002128052C153180895 @default.
- W2002128052 hasConceptScore W2002128052C154945302 @default.
- W2002128052 hasConceptScore W2002128052C192209626 @default.
- W2002128052 hasConceptScore W2002128052C199360897 @default.
- W2002128052 hasConceptScore W2002128052C2776401178 @default.
- W2002128052 hasConceptScore W2002128052C2780801425 @default.
- W2002128052 hasConceptScore W2002128052C2781122975 @default.
- W2002128052 hasConceptScore W2002128052C41008148 @default.
- W2002128052 hasConceptScore W2002128052C41895202 @default.
- W2002128052 hasConceptScore W2002128052C50644808 @default.
- W2002128052 hasConceptScore W2002128052C59404180 @default.
- W2002128052 hasConceptScore W2002128052C73555534 @default.
- W2002128052 hasConceptScore W2002128052C97931131 @default.
- W2002128052 hasFunder F4320321001 @default.
- W2002128052 hasLocation W20021280521 @default.
- W2002128052 hasOpenAccess W2002128052 @default.
- W2002128052 hasPrimaryLocation W20021280521 @default.
- W2002128052 hasRelatedWork W2050806332 @default.
- W2002128052 hasRelatedWork W2061273563 @default.
- W2002128052 hasRelatedWork W2507989420 @default.