Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002156731> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2002156731 endingPage "87" @default.
- W2002156731 startingPage "81" @default.
- W2002156731 abstract "We investigated whether modeling with artificial neural networks or logistic regression of distortion product otoacoustic emissions (DPOAE), across diverse frequencies, may achieve an accurate diagnosis of sensorineural hearing loss (SNHL) of cochlear origin. 256 ears (90 with SNHL and 166 with normal hearing) were evaluated with pure-tone audiometry, impedance audiometry, speech audiometry and DPOAE. Ears were split into training (n = 176) and validation (n = 80) sets. Input variables included gender, age, examination time, DPOAE intensity at F(2) frequencies 593, 937, 1906, 3812 and 6031 Hz, and respective values corrected for noise levels. In the validation data set, an average network had an area under the receiver operating characteristic curve (AUC) of 0.86 (accuracy 84%). Logistic regressions including all these variables or those selected by backward elimination had AUC values of 0.91 and 0.92, respectively (accuracy 85% both). Eleven of 12 trained networks had better specificity than the backward elimination logistic regression, and the backward elimination logistic regression had a better sensitivity than 11 of the 12 networks. Both modeling approaches correctly identified all ears with sudden hearing loss, congenital hearing loss, head trauma, nuclear jaundice and ototoxicity, and 2-3 of 5 ears with acoustic trauma, but missed 1-3 of 3 ears with Ménière's disease and 4-6 of 8 ears with abnormal pure-tone thresholds on audiometry which had no accompanying findings. For SNHL exceeding 45 dB HL on a pure-tone threshold, sensitivity was 83% (15/18) by neural networks and 84 or 94% (16/18 or 17/18) by logistic regression. Both neural-network-based analysis and logistic regression modeling of the DPOAE pattern across a range of frequencies offer promising approaches for the objective diagnosis of moderate and severe SNHL." @default.
- W2002156731 created "2016-06-24" @default.
- W2002156731 creator A5004303298 @default.
- W2002156731 creator A5062268434 @default.
- W2002156731 creator A5070446713 @default.
- W2002156731 creator A5084118554 @default.
- W2002156731 creator A5090587603 @default.
- W2002156731 date "2004-01-01" @default.
- W2002156731 modified "2023-10-03" @default.
- W2002156731 title "Diagnosis of Sensorineural Hearing Loss with Neural Networks versus Logistic Regression Modeling of Distortion Product Otoacoustic Emissions" @default.
- W2002156731 cites W2068487170 @default.
- W2002156731 cites W2085782833 @default.
- W2002156731 cites W2123715374 @default.
- W2002156731 cites W4253992921 @default.
- W2002156731 doi "https://doi.org/10.1159/000075999" @default.
- W2002156731 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/14981356" @default.
- W2002156731 hasPublicationYear "2004" @default.
- W2002156731 type Work @default.
- W2002156731 sameAs 2002156731 @default.
- W2002156731 citedByCount "6" @default.
- W2002156731 countsByYear W20021567312012 @default.
- W2002156731 countsByYear W20021567312018 @default.
- W2002156731 countsByYear W20021567312020 @default.
- W2002156731 countsByYear W20021567312021 @default.
- W2002156731 crossrefType "journal-article" @default.
- W2002156731 hasAuthorship W2002156731A5004303298 @default.
- W2002156731 hasAuthorship W2002156731A5062268434 @default.
- W2002156731 hasAuthorship W2002156731A5070446713 @default.
- W2002156731 hasAuthorship W2002156731A5084118554 @default.
- W2002156731 hasAuthorship W2002156731A5090587603 @default.
- W2002156731 hasConcept C126322002 @default.
- W2002156731 hasConcept C151956035 @default.
- W2002156731 hasConcept C2780493683 @default.
- W2002156731 hasConcept C2780554537 @default.
- W2002156731 hasConcept C2780607864 @default.
- W2002156731 hasConcept C2781383708 @default.
- W2002156731 hasConcept C548259974 @default.
- W2002156731 hasConcept C58471807 @default.
- W2002156731 hasConcept C71924100 @default.
- W2002156731 hasConceptScore W2002156731C126322002 @default.
- W2002156731 hasConceptScore W2002156731C151956035 @default.
- W2002156731 hasConceptScore W2002156731C2780493683 @default.
- W2002156731 hasConceptScore W2002156731C2780554537 @default.
- W2002156731 hasConceptScore W2002156731C2780607864 @default.
- W2002156731 hasConceptScore W2002156731C2781383708 @default.
- W2002156731 hasConceptScore W2002156731C548259974 @default.
- W2002156731 hasConceptScore W2002156731C58471807 @default.
- W2002156731 hasConceptScore W2002156731C71924100 @default.
- W2002156731 hasIssue "2" @default.
- W2002156731 hasLocation W20021567311 @default.
- W2002156731 hasLocation W20021567312 @default.
- W2002156731 hasOpenAccess W2002156731 @default.
- W2002156731 hasPrimaryLocation W20021567311 @default.
- W2002156731 hasRelatedWork W144150405 @default.
- W2002156731 hasRelatedWork W1499661475 @default.
- W2002156731 hasRelatedWork W1541938585 @default.
- W2002156731 hasRelatedWork W2006020896 @default.
- W2002156731 hasRelatedWork W2015847365 @default.
- W2002156731 hasRelatedWork W2112463353 @default.
- W2002156731 hasRelatedWork W2503002939 @default.
- W2002156731 hasRelatedWork W2903143916 @default.
- W2002156731 hasRelatedWork W3008328409 @default.
- W2002156731 hasRelatedWork W2578249456 @default.
- W2002156731 hasVolume "9" @default.
- W2002156731 isParatext "false" @default.
- W2002156731 isRetracted "false" @default.
- W2002156731 magId "2002156731" @default.
- W2002156731 workType "article" @default.