Matches in SemOpenAlex for { <https://semopenalex.org/work/W2002173050> ?p ?o ?g. }
- W2002173050 endingPage "921" @default.
- W2002173050 startingPage "910" @default.
- W2002173050 abstract "Nonparametric approaches have been developed that are able to analyze large numbers of single nucleotide polymorphisms (SNPs) in modest sample sizes. These approaches have different selection features and may not provide similar results when applied to the same dataset. Therefore, we compared the results of three approaches (set association, random forests and multifactor dimensionality reduction [MDR]) to select from a total of 93 candidate SNPs a subset of SNPs that are important in determining high-density lipoprotein (HDL)-cholesterol levels. The study population consisted of a random sample from a Dutch monitoring project for cardiovascular disease risk factors and was dichotomized into cases (low HDL-cholesterol, n = 533) and non-cases (high HDL-cholesterol, n = 545) based on gender-specific median values for HDL cholesterol. Clearly, all three approaches prioritized three SNPs as important (CETP Taq1B, CETP−629 C/A and LPL Ser447X). Two SNPs with weaker main effects were additionally prioritized by random forests (APOC3 3175 G/C and CCR2 Val62Ile), whereas MTHFR 677 C/T was selected in combination with CETP Taq1B as best model by MDR. Obtained p-values for the selected models were significant for the set association approach (p =.0019), random forests (p<.01) and MDR (p<.02). In conclusion, the application of a combination of multi-locus methods is a useful approach in genetic association studies to select a well-defined set of important SNPs for further statistical and epidemiological interpretation, providing increased confidence and more information compared with the application of only one method. Genet. Epidemiol. 2007. © 2007 Wiley-Liss, Inc." @default.
- W2002173050 created "2016-06-24" @default.
- W2002173050 creator A5014661480 @default.
- W2002173050 creator A5019652192 @default.
- W2002173050 creator A5023864432 @default.
- W2002173050 creator A5051983330 @default.
- W2002173050 creator A5058855272 @default.
- W2002173050 creator A5063974021 @default.
- W2002173050 creator A5087653861 @default.
- W2002173050 date "2007-12-01" @default.
- W2002173050 modified "2023-10-13" @default.
- W2002173050 title "Analysis of multiple SNPs in genetic association studies: comparison of three multi-locus methods to prioritize and select SNPs" @default.
- W2002173050 cites W1492783783 @default.
- W2002173050 cites W1539593569 @default.
- W2002173050 cites W1551600243 @default.
- W2002173050 cites W195241908 @default.
- W2002173050 cites W2004159986 @default.
- W2002173050 cites W2007669896 @default.
- W2002173050 cites W2037668591 @default.
- W2002173050 cites W2061232867 @default.
- W2002173050 cites W2061551311 @default.
- W2002173050 cites W2076220518 @default.
- W2002173050 cites W2083413750 @default.
- W2002173050 cites W2083944388 @default.
- W2002173050 cites W2085739707 @default.
- W2002173050 cites W2086099578 @default.
- W2002173050 cites W2096866250 @default.
- W2002173050 cites W2097364929 @default.
- W2002173050 cites W2098979053 @default.
- W2002173050 cites W2102109283 @default.
- W2002173050 cites W2114001895 @default.
- W2002173050 cites W2125115279 @default.
- W2002173050 cites W2127258766 @default.
- W2002173050 cites W2143476736 @default.
- W2002173050 cites W2150248304 @default.
- W2002173050 cites W2154572047 @default.
- W2002173050 cites W2167717072 @default.
- W2002173050 cites W2911964244 @default.
- W2002173050 cites W4237171445 @default.
- W2002173050 cites W4240874411 @default.
- W2002173050 cites W4249963938 @default.
- W2002173050 cites W4256089689 @default.
- W2002173050 doi "https://doi.org/10.1002/gepi.20251" @default.
- W2002173050 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17615573" @default.
- W2002173050 hasPublicationYear "2007" @default.
- W2002173050 type Work @default.
- W2002173050 sameAs 2002173050 @default.
- W2002173050 citedByCount "40" @default.
- W2002173050 countsByYear W20021730502012 @default.
- W2002173050 countsByYear W20021730502014 @default.
- W2002173050 countsByYear W20021730502015 @default.
- W2002173050 countsByYear W20021730502016 @default.
- W2002173050 countsByYear W20021730502017 @default.
- W2002173050 countsByYear W20021730502018 @default.
- W2002173050 countsByYear W20021730502019 @default.
- W2002173050 countsByYear W20021730502021 @default.
- W2002173050 crossrefType "journal-article" @default.
- W2002173050 hasAuthorship W2002173050A5014661480 @default.
- W2002173050 hasAuthorship W2002173050A5019652192 @default.
- W2002173050 hasAuthorship W2002173050A5023864432 @default.
- W2002173050 hasAuthorship W2002173050A5051983330 @default.
- W2002173050 hasAuthorship W2002173050A5058855272 @default.
- W2002173050 hasAuthorship W2002173050A5063974021 @default.
- W2002173050 hasAuthorship W2002173050A5087653861 @default.
- W2002173050 hasConcept C104317684 @default.
- W2002173050 hasConcept C105795698 @default.
- W2002173050 hasConcept C106208931 @default.
- W2002173050 hasConcept C135763542 @default.
- W2002173050 hasConcept C139275648 @default.
- W2002173050 hasConcept C153209595 @default.
- W2002173050 hasConcept C154945302 @default.
- W2002173050 hasConcept C169258074 @default.
- W2002173050 hasConcept C180754005 @default.
- W2002173050 hasConcept C186413461 @default.
- W2002173050 hasConcept C25249476 @default.
- W2002173050 hasConcept C2908647359 @default.
- W2002173050 hasConcept C33923547 @default.
- W2002173050 hasConcept C41008148 @default.
- W2002173050 hasConcept C43563269 @default.
- W2002173050 hasConcept C54355233 @default.
- W2002173050 hasConcept C70721500 @default.
- W2002173050 hasConcept C71924100 @default.
- W2002173050 hasConcept C86803240 @default.
- W2002173050 hasConcept C99454951 @default.
- W2002173050 hasConceptScore W2002173050C104317684 @default.
- W2002173050 hasConceptScore W2002173050C105795698 @default.
- W2002173050 hasConceptScore W2002173050C106208931 @default.
- W2002173050 hasConceptScore W2002173050C135763542 @default.
- W2002173050 hasConceptScore W2002173050C139275648 @default.
- W2002173050 hasConceptScore W2002173050C153209595 @default.
- W2002173050 hasConceptScore W2002173050C154945302 @default.
- W2002173050 hasConceptScore W2002173050C169258074 @default.
- W2002173050 hasConceptScore W2002173050C180754005 @default.
- W2002173050 hasConceptScore W2002173050C186413461 @default.
- W2002173050 hasConceptScore W2002173050C25249476 @default.
- W2002173050 hasConceptScore W2002173050C2908647359 @default.
- W2002173050 hasConceptScore W2002173050C33923547 @default.
- W2002173050 hasConceptScore W2002173050C41008148 @default.